The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Un antidictionnaire est particulièrement utile pour la compression de données, et des algorithmes de compression sans perte d'électrocardiogramme (ECG) en ligne utilisant des antidictionnaires ont été proposés. Ils fonctionnent en temps réel avec une mémoire constante et offrent de meilleurs taux de compression que les algorithmes traditionnels de compression de données sans perte, alors qu'ils ne traitent que les données ECG sur un alphabet binaire. Cet article propose une compression sans perte ECG en ligne pour une donnée donnée sur un alphabet fini. L'algorithme proposé donne non seulement de meilleurs taux de compression que ces algorithmes, mais utilise également moins d'espace de calcul qu'eux. De plus, l’algorithme proposé fonctionne en temps réel. Son efficacité est démontrée par les résultats de simulation.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Takahiro OTA, Hiroyoshi MORITA, "On-Line Electrocardiogram Lossless Compression Using Antidictionary Codes for a Finite Alphabet" in IEICE TRANSACTIONS on Information,
vol. E93-D, no. 12, pp. 3384-3391, December 2010, doi: 10.1587/transinf.E93.D.3384.
Abstract: An antidictionary is particularly useful for data compression, and on-line electrocardiogram (ECG) lossless compression algorithms using antidictionaries have been proposed. They work in real-time with constant memory and give better compression ratios than traditional lossless data compression algorithms, while they only deal with ECG data on a binary alphabet. This paper proposes on-line ECG lossless compression for a given data on a finite alphabet. The proposed algorithm gives not only better compression ratios than those algorithms but also uses less computational space than they do. Moreover, the proposed algorithm work in real-time. Its effectiveness is demonstrated by simulation results.
URL: https://global.ieice.org/en_transactions/information/10.1587/transinf.E93.D.3384/_p
Copier
@ARTICLE{e93-d_12_3384,
author={Takahiro OTA, Hiroyoshi MORITA, },
journal={IEICE TRANSACTIONS on Information},
title={On-Line Electrocardiogram Lossless Compression Using Antidictionary Codes for a Finite Alphabet},
year={2010},
volume={E93-D},
number={12},
pages={3384-3391},
abstract={An antidictionary is particularly useful for data compression, and on-line electrocardiogram (ECG) lossless compression algorithms using antidictionaries have been proposed. They work in real-time with constant memory and give better compression ratios than traditional lossless data compression algorithms, while they only deal with ECG data on a binary alphabet. This paper proposes on-line ECG lossless compression for a given data on a finite alphabet. The proposed algorithm gives not only better compression ratios than those algorithms but also uses less computational space than they do. Moreover, the proposed algorithm work in real-time. Its effectiveness is demonstrated by simulation results.},
keywords={},
doi={10.1587/transinf.E93.D.3384},
ISSN={1745-1361},
month={December},}
Copier
TY - JOUR
TI - On-Line Electrocardiogram Lossless Compression Using Antidictionary Codes for a Finite Alphabet
T2 - IEICE TRANSACTIONS on Information
SP - 3384
EP - 3391
AU - Takahiro OTA
AU - Hiroyoshi MORITA
PY - 2010
DO - 10.1587/transinf.E93.D.3384
JO - IEICE TRANSACTIONS on Information
SN - 1745-1361
VL - E93-D
IS - 12
JA - IEICE TRANSACTIONS on Information
Y1 - December 2010
AB - An antidictionary is particularly useful for data compression, and on-line electrocardiogram (ECG) lossless compression algorithms using antidictionaries have been proposed. They work in real-time with constant memory and give better compression ratios than traditional lossless data compression algorithms, while they only deal with ECG data on a binary alphabet. This paper proposes on-line ECG lossless compression for a given data on a finite alphabet. The proposed algorithm gives not only better compression ratios than those algorithms but also uses less computational space than they do. Moreover, the proposed algorithm work in real-time. Its effectiveness is demonstrated by simulation results.
ER -