The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Cet article tente de résoudre les problèmes ouverts de planification des ateliers (JSSP) en les traduisant en problèmes de test de satisfaction booléenne (SAT). La méthode de codage est essentiellement la même que celle proposée par Crawford et Baker. Les problèmes ouverts sont ABZ8, ABZ9, YN1, YN2, YN3 et YN4. Nous avons prouvé que les bornes supérieures les plus connues 678 de ABZ9 et 884 de YN1 sont effectivement optimales. Nous avons également amélioré la limite supérieure de YN2 et les limites inférieures de ABZ8, YN2, YN3 et YN4.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Miyuki KOSHIMURA, Hidetomo NABESHIMA, Hiroshi FUJITA, Ryuzo HASEGAWA, "Solving Open Job-Shop Scheduling Problems by SAT Encoding" in IEICE TRANSACTIONS on Information,
vol. E93-D, no. 8, pp. 2316-2318, August 2010, doi: 10.1587/transinf.E93.D.2316.
Abstract: This paper tries to solve open Job-Shop Scheduling Problems (JSSP) by translating them into Boolean Satisfiability Testing Problems (SAT). The encoding method is essentially the same as the one proposed by Crawford and Baker. The open problems are ABZ8, ABZ9, YN1, YN2, YN3, and YN4. We proved that the best known upper bounds 678 of ABZ9 and 884 of YN1 are indeed optimal. We also improved the upper bound of YN2 and lower bounds of ABZ8, YN2, YN3 and YN4.
URL: https://global.ieice.org/en_transactions/information/10.1587/transinf.E93.D.2316/_p
Copier
@ARTICLE{e93-d_8_2316,
author={Miyuki KOSHIMURA, Hidetomo NABESHIMA, Hiroshi FUJITA, Ryuzo HASEGAWA, },
journal={IEICE TRANSACTIONS on Information},
title={Solving Open Job-Shop Scheduling Problems by SAT Encoding},
year={2010},
volume={E93-D},
number={8},
pages={2316-2318},
abstract={This paper tries to solve open Job-Shop Scheduling Problems (JSSP) by translating them into Boolean Satisfiability Testing Problems (SAT). The encoding method is essentially the same as the one proposed by Crawford and Baker. The open problems are ABZ8, ABZ9, YN1, YN2, YN3, and YN4. We proved that the best known upper bounds 678 of ABZ9 and 884 of YN1 are indeed optimal. We also improved the upper bound of YN2 and lower bounds of ABZ8, YN2, YN3 and YN4.},
keywords={},
doi={10.1587/transinf.E93.D.2316},
ISSN={1745-1361},
month={August},}
Copier
TY - JOUR
TI - Solving Open Job-Shop Scheduling Problems by SAT Encoding
T2 - IEICE TRANSACTIONS on Information
SP - 2316
EP - 2318
AU - Miyuki KOSHIMURA
AU - Hidetomo NABESHIMA
AU - Hiroshi FUJITA
AU - Ryuzo HASEGAWA
PY - 2010
DO - 10.1587/transinf.E93.D.2316
JO - IEICE TRANSACTIONS on Information
SN - 1745-1361
VL - E93-D
IS - 8
JA - IEICE TRANSACTIONS on Information
Y1 - August 2010
AB - This paper tries to solve open Job-Shop Scheduling Problems (JSSP) by translating them into Boolean Satisfiability Testing Problems (SAT). The encoding method is essentially the same as the one proposed by Crawford and Baker. The open problems are ABZ8, ABZ9, YN1, YN2, YN3, and YN4. We proved that the best known upper bounds 678 of ABZ9 and 884 of YN1 are indeed optimal. We also improved the upper bound of YN2 and lower bounds of ABZ8, YN2, YN3 and YN4.
ER -