The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Dans cet article, nous obtenons un certain raffinement des théorèmes de représentation pour les langages sans contexte en utilisant les langages de Dyck, les systèmes d'insertion, les langages strictement testables localement et les morphismes. Par exemple, nous avons amélioré le théorème de représentation de Chomsky-Schützenberger et montré que chaque langage hors contexte L peut être représenté sous la forme L=h(D ∪ R), où D est une langue Dyck, R est un langage strictement 3-testable, et h est un morphisme. Une représentation similaire pour les langages sans contexte peut être obtenue, en utilisant des systèmes d'insertion de poids (3,0) et des langages strictement 4-testables.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Kaoru FUJIOKA, "Refinement of Representation Theorems for Context-Free Languages" in IEICE TRANSACTIONS on Information,
vol. E93-D, no. 2, pp. 227-232, February 2010, doi: 10.1587/transinf.E93.D.227.
Abstract: In this paper, we obtain some refinement of representation theorems for context-free languages by using Dyck languages, insertion systems, strictly locally testable languages, and morphisms. For instance, we improved the Chomsky-Schützenberger representation theorem and show that each context-free language L can be represented in the form L=h(D ∪ R), where D is a Dyck language, R is a strictly 3-testable language, and h is a morphism. A similar representation for context-free languages can be obtained, using insertion systems of weight (3,0) and strictly 4-testable languages.
URL: https://global.ieice.org/en_transactions/information/10.1587/transinf.E93.D.227/_p
Copier
@ARTICLE{e93-d_2_227,
author={Kaoru FUJIOKA, },
journal={IEICE TRANSACTIONS on Information},
title={Refinement of Representation Theorems for Context-Free Languages},
year={2010},
volume={E93-D},
number={2},
pages={227-232},
abstract={In this paper, we obtain some refinement of representation theorems for context-free languages by using Dyck languages, insertion systems, strictly locally testable languages, and morphisms. For instance, we improved the Chomsky-Schützenberger representation theorem and show that each context-free language L can be represented in the form L=h(D ∪ R), where D is a Dyck language, R is a strictly 3-testable language, and h is a morphism. A similar representation for context-free languages can be obtained, using insertion systems of weight (3,0) and strictly 4-testable languages.},
keywords={},
doi={10.1587/transinf.E93.D.227},
ISSN={1745-1361},
month={February},}
Copier
TY - JOUR
TI - Refinement of Representation Theorems for Context-Free Languages
T2 - IEICE TRANSACTIONS on Information
SP - 227
EP - 232
AU - Kaoru FUJIOKA
PY - 2010
DO - 10.1587/transinf.E93.D.227
JO - IEICE TRANSACTIONS on Information
SN - 1745-1361
VL - E93-D
IS - 2
JA - IEICE TRANSACTIONS on Information
Y1 - February 2010
AB - In this paper, we obtain some refinement of representation theorems for context-free languages by using Dyck languages, insertion systems, strictly locally testable languages, and morphisms. For instance, we improved the Chomsky-Schützenberger representation theorem and show that each context-free language L can be represented in the form L=h(D ∪ R), where D is a Dyck language, R is a strictly 3-testable language, and h is a morphism. A similar representation for context-free languages can be obtained, using insertion systems of weight (3,0) and strictly 4-testable languages.
ER -