The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Cette lettre propose un nouveau type de fonctionnalités pour la récupération d’images couleur basées sur des histogrammes d’index de quantification vectorielle prédictive de limite pondérée par la distance (DWBPVQ). Pour chaque image couleur de la base de données, 6 histogrammes (2 pour chaque composante couleur) sont calculés à partir des six séquences d'index DWBPVQ correspondantes. Les résultats de la simulation de récupération montrent que, par rapport aux fonctionnalités traditionnelles basées sur l'histogramme de couleurs dans le domaine spatial (SCH) et aux fonctionnalités basées sur l'histogramme d'index DCTVQ (DCTVQIH), les fonctionnalités DWBPVQIH proposées peuvent améliorer considérablement les performances de rappel et de précision.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Zhen SUN, Zhe-Ming LU, Hao LUO, "Color Image Retrieval Based on Distance-Weighted Boundary Predictive Vector Quantization Index Histograms" in IEICE TRANSACTIONS on Information,
vol. E92-D, no. 9, pp. 1803-1806, September 2009, doi: 10.1587/transinf.E92.D.1803.
Abstract: This Letter proposes a new kind of features for color image retrieval based on Distance-weighted Boundary Predictive Vector Quantization (DWBPVQ) Index Histograms. For each color image in the database, 6 histograms (2 for each color component) are calculated from the six corresponding DWBPVQ index sequences. The retrieval simulation results show that, compared with the traditional Spatial-domain Color-Histogram-based (SCH) features and the DCTVQ index histogram-based (DCTVQIH) features, the proposed DWBPVQIH features can greatly improve the recall and precision performance.
URL: https://global.ieice.org/en_transactions/information/10.1587/transinf.E92.D.1803/_p
Copier
@ARTICLE{e92-d_9_1803,
author={Zhen SUN, Zhe-Ming LU, Hao LUO, },
journal={IEICE TRANSACTIONS on Information},
title={Color Image Retrieval Based on Distance-Weighted Boundary Predictive Vector Quantization Index Histograms},
year={2009},
volume={E92-D},
number={9},
pages={1803-1806},
abstract={This Letter proposes a new kind of features for color image retrieval based on Distance-weighted Boundary Predictive Vector Quantization (DWBPVQ) Index Histograms. For each color image in the database, 6 histograms (2 for each color component) are calculated from the six corresponding DWBPVQ index sequences. The retrieval simulation results show that, compared with the traditional Spatial-domain Color-Histogram-based (SCH) features and the DCTVQ index histogram-based (DCTVQIH) features, the proposed DWBPVQIH features can greatly improve the recall and precision performance.},
keywords={},
doi={10.1587/transinf.E92.D.1803},
ISSN={1745-1361},
month={September},}
Copier
TY - JOUR
TI - Color Image Retrieval Based on Distance-Weighted Boundary Predictive Vector Quantization Index Histograms
T2 - IEICE TRANSACTIONS on Information
SP - 1803
EP - 1806
AU - Zhen SUN
AU - Zhe-Ming LU
AU - Hao LUO
PY - 2009
DO - 10.1587/transinf.E92.D.1803
JO - IEICE TRANSACTIONS on Information
SN - 1745-1361
VL - E92-D
IS - 9
JA - IEICE TRANSACTIONS on Information
Y1 - September 2009
AB - This Letter proposes a new kind of features for color image retrieval based on Distance-weighted Boundary Predictive Vector Quantization (DWBPVQ) Index Histograms. For each color image in the database, 6 histograms (2 for each color component) are calculated from the six corresponding DWBPVQ index sequences. The retrieval simulation results show that, compared with the traditional Spatial-domain Color-Histogram-based (SCH) features and the DCTVQ index histogram-based (DCTVQIH) features, the proposed DWBPVQIH features can greatly improve the recall and precision performance.
ER -