The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Nous proposons un nouveau modèle de génération de références synthétiques utilisant la régression de séries chronologiques partielles, appelé Modèle générique intégré à régression partielle (PRIGM). PRIGM résume les caractéristiques uniques des données d'entrée du capteur en données de séries chronologiques génériques confirmant la similarité de génération et évaluant l'exactitude des références synthétiques. Les résultats expérimentaux obtenus par le modèle proposé avec sa formule vérifient que PRIGM préserve les caractéristiques des séries chronologiques des données empiriques dans les données de séries chronologiques complexes à moins de 10.4 % d'une différence moyenne en termes d'exactitude des statistiques descriptives.
Kyungmin KIM
Yeungnam University
Jiung SONG
SYMYOO CO., LTD.
Jong Wook KWAK
Yeungnam University
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Kyungmin KIM, Jiung SONG, Jong Wook KWAK, "PRIGM: Partial-Regression-Integrated Generic Model for Synthetic Benchmarks Robust to Sensor Characteristics" in IEICE TRANSACTIONS on Information,
vol. E105-D, no. 7, pp. 1330-1334, July 2022, doi: 10.1587/transinf.2021EDL8113.
Abstract: We propose a novel synthetic-benchmarks generation model using partial time-series regression, called Partial-Regression-Integrated Generic Model (PRIGM). PRIGM abstracts the unique characteristics of the input sensor data into generic time-series data confirming the generation similarity and evaluating the correctness of the synthetic benchmarks. The experimental results obtained by the proposed model with its formula verify that PRIGM preserves the time-series characteristics of empirical data in complex time-series data within 10.4% on an average difference in terms of descriptive statistics accuracy.
URL: https://global.ieice.org/en_transactions/information/10.1587/transinf.2021EDL8113/_p
Copier
@ARTICLE{e105-d_7_1330,
author={Kyungmin KIM, Jiung SONG, Jong Wook KWAK, },
journal={IEICE TRANSACTIONS on Information},
title={PRIGM: Partial-Regression-Integrated Generic Model for Synthetic Benchmarks Robust to Sensor Characteristics},
year={2022},
volume={E105-D},
number={7},
pages={1330-1334},
abstract={We propose a novel synthetic-benchmarks generation model using partial time-series regression, called Partial-Regression-Integrated Generic Model (PRIGM). PRIGM abstracts the unique characteristics of the input sensor data into generic time-series data confirming the generation similarity and evaluating the correctness of the synthetic benchmarks. The experimental results obtained by the proposed model with its formula verify that PRIGM preserves the time-series characteristics of empirical data in complex time-series data within 10.4% on an average difference in terms of descriptive statistics accuracy.},
keywords={},
doi={10.1587/transinf.2021EDL8113},
ISSN={1745-1361},
month={July},}
Copier
TY - JOUR
TI - PRIGM: Partial-Regression-Integrated Generic Model for Synthetic Benchmarks Robust to Sensor Characteristics
T2 - IEICE TRANSACTIONS on Information
SP - 1330
EP - 1334
AU - Kyungmin KIM
AU - Jiung SONG
AU - Jong Wook KWAK
PY - 2022
DO - 10.1587/transinf.2021EDL8113
JO - IEICE TRANSACTIONS on Information
SN - 1745-1361
VL - E105-D
IS - 7
JA - IEICE TRANSACTIONS on Information
Y1 - July 2022
AB - We propose a novel synthetic-benchmarks generation model using partial time-series regression, called Partial-Regression-Integrated Generic Model (PRIGM). PRIGM abstracts the unique characteristics of the input sensor data into generic time-series data confirming the generation similarity and evaluating the correctness of the synthetic benchmarks. The experimental results obtained by the proposed model with its formula verify that PRIGM preserves the time-series characteristics of empirical data in complex time-series data within 10.4% on an average difference in terms of descriptive statistics accuracy.
ER -