The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Cet article montre comment réaliser masquage d'attributs forts basé sur la simulation à opposer à adaptatif adversaires pour chiffrement de prédicat (PE) soutenant expressif familles prédicats sous Standard hypothèses de calcul dans les groupes bilinéaires. Notre résultat principal est un basé sur la simulation, adaptatif, fortement masquant partiellement Schéma PE (PHPE) pour le calcul des prédicats programmes de branchement arithmétique (ABP) sur public attributs, suivis d'un prédicat de produit interne on Privé les attributs. Cela généralise simultanément le chiffrement basé sur les attributs (ABE) pour les formules booléennes et les ABP, ainsi que les schémas PE fortement masqués par les attributs pour les produits internes. Le système proposé s'est avéré sûr pour tout délimité a priori nombre de textes chiffrés et un sans bornes (polynomial) nombre de clés de déchiffrement, qui est le meilleur possible dans le cadre de sécurité adaptative basé sur la simulation. Cela implique directement que notre construction réalise également basé sur l'indiscernabilité fortement masquage partiel sécurité contre les adversaires demandant un sans bornes nombre (polynomial) de textes chiffrés et de clés de déchiffrement. La sécurité du système proposé est dérivée de (la version asymétrique de) le linéaire décisionnel bien étudié (DLIN). Notre travail résout un problème ouvert posé par Wee dans TCC 2017, où son résultat était limité au semi-adaptatif paramètre. De plus, nos résultats font progresser l’état actuel de l’art dans les domaines des schémas PE à forte dissimulation d’attributs basés sur la simulation et sur l’indiscernabilité. Notre principale contribution technique réside dans l'extension de la méthodologie de dissimulation d'attributs forts d'Okamoto et Takashima [EUROCRYPT 2012, ASIACRYPT 2012] au cadre de sécurité basée sur la simulation et au-delà des produits internes.
Pratish DATTA
NTT Research, Inc.
Tatsuaki OKAMOTO
NTT Research, Inc.
Katsuyuki TAKASHIMA
Mitsubishi Electric Corporation
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Pratish DATTA, Tatsuaki OKAMOTO, Katsuyuki TAKASHIMA, "Adaptively Simulation-Secure Attribute-Hiding Predicate Encryption" in IEICE TRANSACTIONS on Information,
vol. E103-D, no. 7, pp. 1556-1597, July 2020, doi: 10.1587/transinf.2019ICP0001.
Abstract: This paper demonstrates how to achieve simulation-based strong attribute hiding against adaptive adversaries for predicate encryption (PE) schemes supporting expressive predicate families under standard computational assumptions in bilinear groups. Our main result is a simulation-based adaptively strongly partially-hiding PE (PHPE) scheme for predicates computing arithmetic branching programs (ABP) on public attributes, followed by an inner-product predicate on private attributes. This simultaneously generalizes attribute-based encryption (ABE) for boolean formulas and ABP's as well as strongly attribute-hiding PE schemes for inner products. The proposed scheme is proven secure for any a priori bounded number of ciphertexts and an unbounded (polynomial) number of decryption keys, which is the best possible in the simulation-based adaptive security framework. This directly implies that our construction also achieves indistinguishability-based strongly partially-hiding security against adversaries requesting an unbounded (polynomial) number of ciphertexts and decryption keys. The security of the proposed scheme is derived under (asymmetric version of) the well-studied decisional linear (DLIN) assumption. Our work resolves an open problem posed by Wee in TCC 2017, where his result was limited to the semi-adaptive setting. Moreover, our result advances the current state of the art in both the fields of simulation-based and indistinguishability-based strongly attribute-hiding PE schemes. Our main technical contribution lies in extending the strong attribute hiding methodology of Okamoto and Takashima [EUROCRYPT 2012, ASIACRYPT 2012] to the framework of simulation-based security and beyond inner products.
URL: https://global.ieice.org/en_transactions/information/10.1587/transinf.2019ICP0001/_p
Copier
@ARTICLE{e103-d_7_1556,
author={Pratish DATTA, Tatsuaki OKAMOTO, Katsuyuki TAKASHIMA, },
journal={IEICE TRANSACTIONS on Information},
title={Adaptively Simulation-Secure Attribute-Hiding Predicate Encryption},
year={2020},
volume={E103-D},
number={7},
pages={1556-1597},
abstract={This paper demonstrates how to achieve simulation-based strong attribute hiding against adaptive adversaries for predicate encryption (PE) schemes supporting expressive predicate families under standard computational assumptions in bilinear groups. Our main result is a simulation-based adaptively strongly partially-hiding PE (PHPE) scheme for predicates computing arithmetic branching programs (ABP) on public attributes, followed by an inner-product predicate on private attributes. This simultaneously generalizes attribute-based encryption (ABE) for boolean formulas and ABP's as well as strongly attribute-hiding PE schemes for inner products. The proposed scheme is proven secure for any a priori bounded number of ciphertexts and an unbounded (polynomial) number of decryption keys, which is the best possible in the simulation-based adaptive security framework. This directly implies that our construction also achieves indistinguishability-based strongly partially-hiding security against adversaries requesting an unbounded (polynomial) number of ciphertexts and decryption keys. The security of the proposed scheme is derived under (asymmetric version of) the well-studied decisional linear (DLIN) assumption. Our work resolves an open problem posed by Wee in TCC 2017, where his result was limited to the semi-adaptive setting. Moreover, our result advances the current state of the art in both the fields of simulation-based and indistinguishability-based strongly attribute-hiding PE schemes. Our main technical contribution lies in extending the strong attribute hiding methodology of Okamoto and Takashima [EUROCRYPT 2012, ASIACRYPT 2012] to the framework of simulation-based security and beyond inner products.},
keywords={},
doi={10.1587/transinf.2019ICP0001},
ISSN={1745-1361},
month={July},}
Copier
TY - JOUR
TI - Adaptively Simulation-Secure Attribute-Hiding Predicate Encryption
T2 - IEICE TRANSACTIONS on Information
SP - 1556
EP - 1597
AU - Pratish DATTA
AU - Tatsuaki OKAMOTO
AU - Katsuyuki TAKASHIMA
PY - 2020
DO - 10.1587/transinf.2019ICP0001
JO - IEICE TRANSACTIONS on Information
SN - 1745-1361
VL - E103-D
IS - 7
JA - IEICE TRANSACTIONS on Information
Y1 - July 2020
AB - This paper demonstrates how to achieve simulation-based strong attribute hiding against adaptive adversaries for predicate encryption (PE) schemes supporting expressive predicate families under standard computational assumptions in bilinear groups. Our main result is a simulation-based adaptively strongly partially-hiding PE (PHPE) scheme for predicates computing arithmetic branching programs (ABP) on public attributes, followed by an inner-product predicate on private attributes. This simultaneously generalizes attribute-based encryption (ABE) for boolean formulas and ABP's as well as strongly attribute-hiding PE schemes for inner products. The proposed scheme is proven secure for any a priori bounded number of ciphertexts and an unbounded (polynomial) number of decryption keys, which is the best possible in the simulation-based adaptive security framework. This directly implies that our construction also achieves indistinguishability-based strongly partially-hiding security against adversaries requesting an unbounded (polynomial) number of ciphertexts and decryption keys. The security of the proposed scheme is derived under (asymmetric version of) the well-studied decisional linear (DLIN) assumption. Our work resolves an open problem posed by Wee in TCC 2017, where his result was limited to the semi-adaptive setting. Moreover, our result advances the current state of the art in both the fields of simulation-based and indistinguishability-based strongly attribute-hiding PE schemes. Our main technical contribution lies in extending the strong attribute hiding methodology of Okamoto and Takashima [EUROCRYPT 2012, ASIACRYPT 2012] to the framework of simulation-based security and beyond inner products.
ER -