The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Les graphes circulants récursifs généralisés (GRCG en abrégé) sont une généralisation des graphes circulants récursifs et fournissent un nouveau type de topologie pour les réseaux d'interconnexion. Un graphique de n on dit que les sommets sont s-pancyclique pour quelque $3leqslant sleqslant n$ s'il contient des cycles de toutes longueurs t pour $sleqslant tleqslant n$. La pancyclicité des graphes circulants récursifs a été étudiée par Araki et Shibata (Inf. Process. Lett. vol.81, no.4, pp.187-190, 2002). Dans cet article, nous nous intéressons aux s-pancyclicité des GRCG.
Shyue-Ming TANG
National Defense University
Yue-Li WANG
National Taiwan University of Science and Technology
Chien-Yi LI
National Taiwan University of Science and Technology
Jou-Ming CHANG
National Taipei University of Business
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Shyue-Ming TANG, Yue-Li WANG, Chien-Yi LI, Jou-Ming CHANG, "Cycle Embedding in Generalized Recursive Circulant Graphs" in IEICE TRANSACTIONS on Information,
vol. E101-D, no. 12, pp. 2916-2921, December 2018, doi: 10.1587/transinf.2018PAP0009.
Abstract: Generalized recursive circulant graphs (GRCGs for short) are a generalization of recursive circulant graphs and provide a new type of topology for interconnection networks. A graph of n vertices is said to be s-pancyclic for some $3leqslant sleqslant n$ if it contains cycles of every length t for $sleqslant tleqslant n$. The pancyclicity of recursive circulant graphs was investigated by Araki and Shibata (Inf. Process. Lett. vol.81, no.4, pp.187-190, 2002). In this paper, we are concerned with the s-pancyclicity of GRCGs.
URL: https://global.ieice.org/en_transactions/information/10.1587/transinf.2018PAP0009/_p
Copier
@ARTICLE{e101-d_12_2916,
author={Shyue-Ming TANG, Yue-Li WANG, Chien-Yi LI, Jou-Ming CHANG, },
journal={IEICE TRANSACTIONS on Information},
title={Cycle Embedding in Generalized Recursive Circulant Graphs},
year={2018},
volume={E101-D},
number={12},
pages={2916-2921},
abstract={Generalized recursive circulant graphs (GRCGs for short) are a generalization of recursive circulant graphs and provide a new type of topology for interconnection networks. A graph of n vertices is said to be s-pancyclic for some $3leqslant sleqslant n$ if it contains cycles of every length t for $sleqslant tleqslant n$. The pancyclicity of recursive circulant graphs was investigated by Araki and Shibata (Inf. Process. Lett. vol.81, no.4, pp.187-190, 2002). In this paper, we are concerned with the s-pancyclicity of GRCGs.},
keywords={},
doi={10.1587/transinf.2018PAP0009},
ISSN={1745-1361},
month={December},}
Copier
TY - JOUR
TI - Cycle Embedding in Generalized Recursive Circulant Graphs
T2 - IEICE TRANSACTIONS on Information
SP - 2916
EP - 2921
AU - Shyue-Ming TANG
AU - Yue-Li WANG
AU - Chien-Yi LI
AU - Jou-Ming CHANG
PY - 2018
DO - 10.1587/transinf.2018PAP0009
JO - IEICE TRANSACTIONS on Information
SN - 1745-1361
VL - E101-D
IS - 12
JA - IEICE TRANSACTIONS on Information
Y1 - December 2018
AB - Generalized recursive circulant graphs (GRCGs for short) are a generalization of recursive circulant graphs and provide a new type of topology for interconnection networks. A graph of n vertices is said to be s-pancyclic for some $3leqslant sleqslant n$ if it contains cycles of every length t for $sleqslant tleqslant n$. The pancyclicity of recursive circulant graphs was investigated by Araki and Shibata (Inf. Process. Lett. vol.81, no.4, pp.187-190, 2002). In this paper, we are concerned with the s-pancyclicity of GRCGs.
ER -