The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Les algorithmes de soustraction d'arrière-plan génèrent un modèle d'arrière-plan de la scène de surveillance et comparent le modèle d'arrière-plan avec l'image vidéo actuelle pour détecter les objets au premier plan. En général, la plupart des algorithmes de soustraction d’arrière-plan ne parviennent pas à détecter les objets au premier plan lorsque l’éclairage de la scène change. Un algorithme de soustraction de fond basé sur l'entropie est proposé pour résoudre ce problème. La méthode proposée s'adapte aux changements d'éclairage en mettant à jour le modèle d'arrière-plan en fonction des différences de valeur d'entropie entre l'image actuelle et l'image précédente. Cette modélisation d'arrière-plan basée sur l'entropie peut gérer efficacement les variations d'éclairage soudaines et graduelles. L'algorithme proposé est testé sur six séquences vidéo et comparé à quatre algorithmes pour démontrer son efficacité en termes de F-score, de similarité et de frame rate.
Karthikeyan PANJAPPAGOUNDER RAJAMANICKAM
Anna University
Sakthivel PERIYASAMY
Anna University
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Karthikeyan PANJAPPAGOUNDER RAJAMANICKAM, Sakthivel PERIYASAMY, "Entropy Based Illumination-Invariant Foreground Detection" in IEICE TRANSACTIONS on Information,
vol. E102-D, no. 7, pp. 1434-1437, July 2019, doi: 10.1587/transinf.2018EDL8247.
Abstract: Background subtraction algorithms generate a background model of the monitoring scene and compare the background model with the current video frame to detect foreground objects. In general, most of the background subtraction algorithms fail to detect foreground objects when the scene illumination changes. An entropy based background subtraction algorithm is proposed to address this problem. The proposed method adapts to illumination changes by updating the background model according to differences in entropy value between the current frame and the previous frame. This entropy based background modeling can efficiently handle both sudden and gradual illumination variations. The proposed algorithm is tested in six video sequences and compared with four algorithms to demonstrate its efficiency in terms of F-score, similarity and frame rate.
URL: https://global.ieice.org/en_transactions/information/10.1587/transinf.2018EDL8247/_p
Copier
@ARTICLE{e102-d_7_1434,
author={Karthikeyan PANJAPPAGOUNDER RAJAMANICKAM, Sakthivel PERIYASAMY, },
journal={IEICE TRANSACTIONS on Information},
title={Entropy Based Illumination-Invariant Foreground Detection},
year={2019},
volume={E102-D},
number={7},
pages={1434-1437},
abstract={Background subtraction algorithms generate a background model of the monitoring scene and compare the background model with the current video frame to detect foreground objects. In general, most of the background subtraction algorithms fail to detect foreground objects when the scene illumination changes. An entropy based background subtraction algorithm is proposed to address this problem. The proposed method adapts to illumination changes by updating the background model according to differences in entropy value between the current frame and the previous frame. This entropy based background modeling can efficiently handle both sudden and gradual illumination variations. The proposed algorithm is tested in six video sequences and compared with four algorithms to demonstrate its efficiency in terms of F-score, similarity and frame rate.},
keywords={},
doi={10.1587/transinf.2018EDL8247},
ISSN={1745-1361},
month={July},}
Copier
TY - JOUR
TI - Entropy Based Illumination-Invariant Foreground Detection
T2 - IEICE TRANSACTIONS on Information
SP - 1434
EP - 1437
AU - Karthikeyan PANJAPPAGOUNDER RAJAMANICKAM
AU - Sakthivel PERIYASAMY
PY - 2019
DO - 10.1587/transinf.2018EDL8247
JO - IEICE TRANSACTIONS on Information
SN - 1745-1361
VL - E102-D
IS - 7
JA - IEICE TRANSACTIONS on Information
Y1 - July 2019
AB - Background subtraction algorithms generate a background model of the monitoring scene and compare the background model with the current video frame to detect foreground objects. In general, most of the background subtraction algorithms fail to detect foreground objects when the scene illumination changes. An entropy based background subtraction algorithm is proposed to address this problem. The proposed method adapts to illumination changes by updating the background model according to differences in entropy value between the current frame and the previous frame. This entropy based background modeling can efficiently handle both sudden and gradual illumination variations. The proposed algorithm is tested in six video sequences and compared with four algorithms to demonstrate its efficiency in terms of F-score, similarity and frame rate.
ER -