The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Nous proposons de découvrir la dépendance fonctionnelle primaire approximative (aPFD) pour les tables Web, qui se concentrent sur la relation de détermination entre les attributs principaux et les attributs non principaux et sont plus utiles pour la détection de colonnes d'entités et la découverte de sujets sur les tables Web. Basés sur les règles d'association et la théorie de l'information, nous proposons des métriques Conf et à la Gain d'informations pour évaluer les VFI. En quantifiant la force des PFD et en concevant des stratégies d'élagage pour éliminer les faux positifs, notre méthode pourrait sélectionner efficacement un PFD approximatif minimal non trivial et serait évolutive vers de grands tableaux. Les résultats expérimentaux complets sur des ensembles de données Web réels montrent que notre méthode surpasse considérablement les travaux précédents en termes d'efficacité et d'efficience.
Siyu CHEN
Beijing Jiaotong University
Ning WANG
Beijing Jiaotong University
Mengmeng ZHANG
North China University of Technology
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Siyu CHEN, Ning WANG, Mengmeng ZHANG, "Mining Approximate Primary Functional Dependency on Web Tables" in IEICE TRANSACTIONS on Information,
vol. E102-D, no. 3, pp. 650-654, March 2019, doi: 10.1587/transinf.2018EDL8130.
Abstract: We propose to discover approximate primary functional dependency (aPFD) for web tables, which focus on the determination relationship between primary attributes and non-primary attributes and are more helpful for entity column detection and topic discovery on web tables. Based on association rules and information theory, we propose metrics Conf and InfoGain to evaluate PFDs. By quantifying PFDs' strength and designing pruning strategies to eliminate false positives, our method could select minimal non-trivial approximate PFD effectively and are scalable to large tables. The comprehensive experimental results on real web datasets show that our method significantly outperforms previous work in both effectiveness and efficiency.
URL: https://global.ieice.org/en_transactions/information/10.1587/transinf.2018EDL8130/_p
Copier
@ARTICLE{e102-d_3_650,
author={Siyu CHEN, Ning WANG, Mengmeng ZHANG, },
journal={IEICE TRANSACTIONS on Information},
title={Mining Approximate Primary Functional Dependency on Web Tables},
year={2019},
volume={E102-D},
number={3},
pages={650-654},
abstract={We propose to discover approximate primary functional dependency (aPFD) for web tables, which focus on the determination relationship between primary attributes and non-primary attributes and are more helpful for entity column detection and topic discovery on web tables. Based on association rules and information theory, we propose metrics Conf and InfoGain to evaluate PFDs. By quantifying PFDs' strength and designing pruning strategies to eliminate false positives, our method could select minimal non-trivial approximate PFD effectively and are scalable to large tables. The comprehensive experimental results on real web datasets show that our method significantly outperforms previous work in both effectiveness and efficiency.},
keywords={},
doi={10.1587/transinf.2018EDL8130},
ISSN={1745-1361},
month={March},}
Copier
TY - JOUR
TI - Mining Approximate Primary Functional Dependency on Web Tables
T2 - IEICE TRANSACTIONS on Information
SP - 650
EP - 654
AU - Siyu CHEN
AU - Ning WANG
AU - Mengmeng ZHANG
PY - 2019
DO - 10.1587/transinf.2018EDL8130
JO - IEICE TRANSACTIONS on Information
SN - 1745-1361
VL - E102-D
IS - 3
JA - IEICE TRANSACTIONS on Information
Y1 - March 2019
AB - We propose to discover approximate primary functional dependency (aPFD) for web tables, which focus on the determination relationship between primary attributes and non-primary attributes and are more helpful for entity column detection and topic discovery on web tables. Based on association rules and information theory, we propose metrics Conf and InfoGain to evaluate PFDs. By quantifying PFDs' strength and designing pruning strategies to eliminate false positives, our method could select minimal non-trivial approximate PFD effectively and are scalable to large tables. The comprehensive experimental results on real web datasets show that our method significantly outperforms previous work in both effectiveness and efficiency.
ER -