The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
La technique du spectre d'impulsions généralisée (GPST) est une méthode permettant de résoudre les problèmes inverses de phénomènes dominés par la propagation des ondes et la diffusion. Elle a donc été couramment appliquée dans la reconstruction d'images de tomographie optique diffuse résolue dans le temps. Avec un GPST standard pour la reconstruction simultanée des coefficients d'absorption et de diffusion, les produits des gradients de la fonction de Green et du flux de densité de photons, basés sur l'équation de diffusion de photons, sont nécessaires pour calculer la matrice jacobienne liée à la diffusion. Les difficultés sont doubles : chronophages et singulières sur le terrain à proximité de la source. Ce dernier provoque une grave insensibilité de l’algorithme aux changements de diffusion en profondeur dans les tissus. Pour faire face aux difficultés ci-dessus, nous proposons dans cet article un algorithme GPST modifié qui implique uniquement la fonction de Green et le flux de densité de photons eux-mêmes dans la matrice liée à la diffusion. Nos reconstructions simulées et expérimentales montrent que l'algorithme modifié peut améliorer considérablement la qualité de l'image diffusée et accélérer le processus de reconstruction, sans dégradation évidente de l'image d'absorption.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Feng GAO, Huijuan ZHAO, Yukari TANIKAWA, Yukio YAMADA, "Time-Resolved Diffuse Optical Tomography Using a Modified Generalized Pulse Spectrum Technique" in IEICE TRANSACTIONS on Information,
vol. E85-D, no. 1, pp. 133-142, January 2002, doi: .
Abstract: Generalized Pulse Spectrum Technique (GPST) is a method to solve the inverse problems of wave-propagation and diffusion-dominated phenomena, and therefore has been popularly applied in image reconstruction of time-resolved diffuse optical tomography. With a standard GPST for simultaneous reconstruction of absorption and scattering coefficients, the products of the gradients of the Green's function and the photon-density flux, based on the photon-diffusion equation, are required to calculate the diffusion-related Jacobian matrix. The adversities are of two-folds: time-consuming and singular in the field near the source. The latter causes a severe insensitivity of the algorithm to the scattering changes deep inside tissue. To cope with the above difficulties, we propose in this paper a modified GPST algorithm that only involves the Green's function and the photon-density flux themselves in the scattering-related matrix. Our simulated and experimental reconstructions show that the modified algorithm can significantly improve the quality of scattering image and accelerate the reconstruction process, without an evident degradation in absorption image.
URL: https://global.ieice.org/en_transactions/information/10.1587/e85-d_1_133/_p
Copier
@ARTICLE{e85-d_1_133,
author={Feng GAO, Huijuan ZHAO, Yukari TANIKAWA, Yukio YAMADA, },
journal={IEICE TRANSACTIONS on Information},
title={Time-Resolved Diffuse Optical Tomography Using a Modified Generalized Pulse Spectrum Technique},
year={2002},
volume={E85-D},
number={1},
pages={133-142},
abstract={Generalized Pulse Spectrum Technique (GPST) is a method to solve the inverse problems of wave-propagation and diffusion-dominated phenomena, and therefore has been popularly applied in image reconstruction of time-resolved diffuse optical tomography. With a standard GPST for simultaneous reconstruction of absorption and scattering coefficients, the products of the gradients of the Green's function and the photon-density flux, based on the photon-diffusion equation, are required to calculate the diffusion-related Jacobian matrix. The adversities are of two-folds: time-consuming and singular in the field near the source. The latter causes a severe insensitivity of the algorithm to the scattering changes deep inside tissue. To cope with the above difficulties, we propose in this paper a modified GPST algorithm that only involves the Green's function and the photon-density flux themselves in the scattering-related matrix. Our simulated and experimental reconstructions show that the modified algorithm can significantly improve the quality of scattering image and accelerate the reconstruction process, without an evident degradation in absorption image.},
keywords={},
doi={},
ISSN={},
month={January},}
Copier
TY - JOUR
TI - Time-Resolved Diffuse Optical Tomography Using a Modified Generalized Pulse Spectrum Technique
T2 - IEICE TRANSACTIONS on Information
SP - 133
EP - 142
AU - Feng GAO
AU - Huijuan ZHAO
AU - Yukari TANIKAWA
AU - Yukio YAMADA
PY - 2002
DO -
JO - IEICE TRANSACTIONS on Information
SN -
VL - E85-D
IS - 1
JA - IEICE TRANSACTIONS on Information
Y1 - January 2002
AB - Generalized Pulse Spectrum Technique (GPST) is a method to solve the inverse problems of wave-propagation and diffusion-dominated phenomena, and therefore has been popularly applied in image reconstruction of time-resolved diffuse optical tomography. With a standard GPST for simultaneous reconstruction of absorption and scattering coefficients, the products of the gradients of the Green's function and the photon-density flux, based on the photon-diffusion equation, are required to calculate the diffusion-related Jacobian matrix. The adversities are of two-folds: time-consuming and singular in the field near the source. The latter causes a severe insensitivity of the algorithm to the scattering changes deep inside tissue. To cope with the above difficulties, we propose in this paper a modified GPST algorithm that only involves the Green's function and the photon-density flux themselves in the scattering-related matrix. Our simulated and experimental reconstructions show that the modified algorithm can significantly improve the quality of scattering image and accelerate the reconstruction process, without an evident degradation in absorption image.
ER -