The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
La surveillance automatique du trafic basée sur des techniques de suivi visuel est souhaitée depuis de nombreuses années. Cet article propose un système de surveillance routière de base utilisant une méthode de segmentation basée sur HMM. Le système présenté répond à l’exigence essentielle des ITS : le fonctionnement en temps réel. Son autre avantage est sa robustesse aux ombres des objets en mouvement, qui ont été reconnus comme l'un des principaux obstacles à un suivi robuste des voitures. À l'heure actuelle, grâce au système, nous pouvons estimer la vitesse des véhicules avec une grande précision. Pour acquérir des informations métriques dans le monde réel, le système ne nécessite pas d'étalonnage précis mais n'a besoin que de quatre correspondances ponctuelles entre le plan image et le plan sol.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Jien KATO, Toyohide WATANABE, Hiroyuki HASE, "A Highway Surveillance System Using an HMM-Based Segmentation Method" in IEICE TRANSACTIONS on Information,
vol. E85-D, no. 11, pp. 1767-1775, November 2002, doi: .
Abstract: Automatic traffic surveillance based on visual tracking techniques has been desired for many years. This paper proposes a basic highway surveillance system using an HMM-based segmentation method. The presented system meets the essential requirement of ITS: real-time running. Its another advantage is robustness to the shadows of moving objects, which have been recognized as one of main obstacles to robust car tracking. At present, using the system we can estimate velocity of vehicles with high accuracy. For acquiring metric information in the real world, the system does not require a precise calibration but only needs four point correspondences between the image plane and ground plane.
URL: https://global.ieice.org/en_transactions/information/10.1587/e85-d_11_1767/_p
Copier
@ARTICLE{e85-d_11_1767,
author={Jien KATO, Toyohide WATANABE, Hiroyuki HASE, },
journal={IEICE TRANSACTIONS on Information},
title={A Highway Surveillance System Using an HMM-Based Segmentation Method},
year={2002},
volume={E85-D},
number={11},
pages={1767-1775},
abstract={Automatic traffic surveillance based on visual tracking techniques has been desired for many years. This paper proposes a basic highway surveillance system using an HMM-based segmentation method. The presented system meets the essential requirement of ITS: real-time running. Its another advantage is robustness to the shadows of moving objects, which have been recognized as one of main obstacles to robust car tracking. At present, using the system we can estimate velocity of vehicles with high accuracy. For acquiring metric information in the real world, the system does not require a precise calibration but only needs four point correspondences between the image plane and ground plane.},
keywords={},
doi={},
ISSN={},
month={November},}
Copier
TY - JOUR
TI - A Highway Surveillance System Using an HMM-Based Segmentation Method
T2 - IEICE TRANSACTIONS on Information
SP - 1767
EP - 1775
AU - Jien KATO
AU - Toyohide WATANABE
AU - Hiroyuki HASE
PY - 2002
DO -
JO - IEICE TRANSACTIONS on Information
SN -
VL - E85-D
IS - 11
JA - IEICE TRANSACTIONS on Information
Y1 - November 2002
AB - Automatic traffic surveillance based on visual tracking techniques has been desired for many years. This paper proposes a basic highway surveillance system using an HMM-based segmentation method. The presented system meets the essential requirement of ITS: real-time running. Its another advantage is robustness to the shadows of moving objects, which have been recognized as one of main obstacles to robust car tracking. At present, using the system we can estimate velocity of vehicles with high accuracy. For acquiring metric information in the real world, the system does not require a precise calibration but only needs four point correspondences between the image plane and ground plane.
ER -