The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Chen et al. ont proposé une nouvelle méthode d'estimation des valeurs d'appartenance aux ensembles flous. Le système proposé s'appuie sur des données empiriques/expérimentales, qui reflètent les connaissances de l'expert sur le degré relatif d'appartenance des membres, puis recherche les valeurs d'appartenance les mieux adaptées à l'élément. Grâce à l'estimation du cas pratique (Sect. 3 dans [1]), l'algorithme suggère de normaliser les valeurs d'adhésion estimées s'il y en a plusieurs parmi elles et de modifier certaines conditions pour garantir sa positivité. Dans cet article, nous montrons comment utiliser la même condition imposée pour garantir que les valeurs d'appartenance estimées seront dans l'intervalle unitaire sans normalisation.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Elsaid Mohamed ABDELRAHIM, Takashi YAHAGI, "A Note on "New Estimation Method for the Membership Values in Fuzzy Sets"" in IEICE TRANSACTIONS on Information,
vol. E84-D, no. 5, pp. 675-678, May 2001, doi: .
Abstract: Chen et al., have proposed a new estimation method for the membership values in fuzzy sets. The proposed scheme takes input from empirical/experimental data, which reflect the expert's knowledge on the relative degree of belonging of the members, and then searches for the best fit membership values of the element. Through the estimation of the practical case (Sect. 3 in [1]) the algorithm suggests to normalize the estimated membership values if there is any among them more than one and change some condition to guarantee its positiveness. In this paper, we show how to use the same imposed condition to guarantee that the estimated membership values will be within the unit interval without normalization.
URL: https://global.ieice.org/en_transactions/information/10.1587/e84-d_5_675/_p
Copier
@ARTICLE{e84-d_5_675,
author={Elsaid Mohamed ABDELRAHIM, Takashi YAHAGI, },
journal={IEICE TRANSACTIONS on Information},
title={A Note on "New Estimation Method for the Membership Values in Fuzzy Sets"},
year={2001},
volume={E84-D},
number={5},
pages={675-678},
abstract={Chen et al., have proposed a new estimation method for the membership values in fuzzy sets. The proposed scheme takes input from empirical/experimental data, which reflect the expert's knowledge on the relative degree of belonging of the members, and then searches for the best fit membership values of the element. Through the estimation of the practical case (Sect. 3 in [1]) the algorithm suggests to normalize the estimated membership values if there is any among them more than one and change some condition to guarantee its positiveness. In this paper, we show how to use the same imposed condition to guarantee that the estimated membership values will be within the unit interval without normalization.},
keywords={},
doi={},
ISSN={},
month={May},}
Copier
TY - JOUR
TI - A Note on "New Estimation Method for the Membership Values in Fuzzy Sets"
T2 - IEICE TRANSACTIONS on Information
SP - 675
EP - 678
AU - Elsaid Mohamed ABDELRAHIM
AU - Takashi YAHAGI
PY - 2001
DO -
JO - IEICE TRANSACTIONS on Information
SN -
VL - E84-D
IS - 5
JA - IEICE TRANSACTIONS on Information
Y1 - May 2001
AB - Chen et al., have proposed a new estimation method for the membership values in fuzzy sets. The proposed scheme takes input from empirical/experimental data, which reflect the expert's knowledge on the relative degree of belonging of the members, and then searches for the best fit membership values of the element. Through the estimation of the practical case (Sect. 3 in [1]) the algorithm suggests to normalize the estimated membership values if there is any among them more than one and change some condition to guarantee its positiveness. In this paper, we show how to use the same imposed condition to guarantee that the estimated membership values will be within the unit interval without normalization.
ER -