The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Dans cet article, nous proposons une technique de concaténation en temps réel entre les mouvements squelettiques de base obtenus par la technique de capture de mouvement, etc. pour générer un comportement réaliste pour un personnage humanoïde (avatar). Nous effectuons plusieurs expériences pour montrer l'avantage et les propriétés de notre technique et rapportons également les résultats. Enfin, nous décrivons notre système appliqué appelé WonderSpace qui conduit les participants vers des mondes virtuels passionnants et attrayants avec des personnages humanoïdes dans le cyberespace. Notre technique de concaténation présente les caractéristiques suivantes : (1) basée sur une méthode de fusion entre un mouvement précédent et un mouvement suivant par une fonction de transition, (2) réalisant une « transition douce », une « transition monotone » et une « transition équivalente » par la fonction de transition. fonction de transition appelée fonction coller, (3) générer un intervalle de connexion en effectuant les prédictions vers l'arrière et vers l'avant pour les mouvements précédents et suivants, (4) exécuter la prédiction sous l'hypothèse de « l'état d'arrêt en douceur » ou de « l'état de mouvement de connexion », (5) contrôler les intervalles de prédiction par le paramètre indiquant l'importance du mouvement, et (6) réaliser un calcul en temps réel.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Yoshiyuki MOCHIZUKI, Toshiya NAKA, Shigeo ASAHARA, "Realtime Concatenation Technique for Skeletal Motion in Humanoid Animation" in IEICE TRANSACTIONS on Information,
vol. E84-D, no. 1, pp. 188-200, January 2001, doi: .
Abstract: In this paper, we propose a realtime concatenation technique between basic skeletal motions obtained by the motion capture technique and etc. to generate a lifelike behavior for a humanoid character (avatar). We execute several experiments to show the advantage and the property of our technique and also report the results. Finally, we describe our applied system called WonderSpace which leads participants to the exciting and attractive virtual worlds with humanoid characters in cyberspace. Our concatenation technique has the following features: (1) based on a blending method between a preceding motion and a succeeding motion by a transition function, (2) realizing "smooth transition," "monotone transition," and "equivalent transition" by the transition function called paste function, (3) generating a connecting interval by making the backward and forward predictions for the preceding and succeeding motions, (4) executing the prediction under the hypothesis of "the smooth stopping state" or "the state of connecting motion", (5) controlling the prediction intervals by the parameter indicating the importance of the motion, and (6) realizing realtime calculation.
URL: https://global.ieice.org/en_transactions/information/10.1587/e84-d_1_188/_p
Copier
@ARTICLE{e84-d_1_188,
author={Yoshiyuki MOCHIZUKI, Toshiya NAKA, Shigeo ASAHARA, },
journal={IEICE TRANSACTIONS on Information},
title={Realtime Concatenation Technique for Skeletal Motion in Humanoid Animation},
year={2001},
volume={E84-D},
number={1},
pages={188-200},
abstract={In this paper, we propose a realtime concatenation technique between basic skeletal motions obtained by the motion capture technique and etc. to generate a lifelike behavior for a humanoid character (avatar). We execute several experiments to show the advantage and the property of our technique and also report the results. Finally, we describe our applied system called WonderSpace which leads participants to the exciting and attractive virtual worlds with humanoid characters in cyberspace. Our concatenation technique has the following features: (1) based on a blending method between a preceding motion and a succeeding motion by a transition function, (2) realizing "smooth transition," "monotone transition," and "equivalent transition" by the transition function called paste function, (3) generating a connecting interval by making the backward and forward predictions for the preceding and succeeding motions, (4) executing the prediction under the hypothesis of "the smooth stopping state" or "the state of connecting motion", (5) controlling the prediction intervals by the parameter indicating the importance of the motion, and (6) realizing realtime calculation.},
keywords={},
doi={},
ISSN={},
month={January},}
Copier
TY - JOUR
TI - Realtime Concatenation Technique for Skeletal Motion in Humanoid Animation
T2 - IEICE TRANSACTIONS on Information
SP - 188
EP - 200
AU - Yoshiyuki MOCHIZUKI
AU - Toshiya NAKA
AU - Shigeo ASAHARA
PY - 2001
DO -
JO - IEICE TRANSACTIONS on Information
SN -
VL - E84-D
IS - 1
JA - IEICE TRANSACTIONS on Information
Y1 - January 2001
AB - In this paper, we propose a realtime concatenation technique between basic skeletal motions obtained by the motion capture technique and etc. to generate a lifelike behavior for a humanoid character (avatar). We execute several experiments to show the advantage and the property of our technique and also report the results. Finally, we describe our applied system called WonderSpace which leads participants to the exciting and attractive virtual worlds with humanoid characters in cyberspace. Our concatenation technique has the following features: (1) based on a blending method between a preceding motion and a succeeding motion by a transition function, (2) realizing "smooth transition," "monotone transition," and "equivalent transition" by the transition function called paste function, (3) generating a connecting interval by making the backward and forward predictions for the preceding and succeeding motions, (4) executing the prediction under the hypothesis of "the smooth stopping state" or "the state of connecting motion", (5) controlling the prediction intervals by the parameter indicating the importance of the motion, and (6) realizing realtime calculation.
ER -