The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Dans cet article, un nouvel algorithme hiérarchique d'appariement de blocs utilisant des pyramides de moyenne et de différence est présenté. La détection des vecteurs de mouvement à chaque niveau de la pyramide est réalisée en éliminant sélectivement les vecteurs de mouvement candidats qui ne peuvent pas fournir la meilleure correspondance au niveau immédiatement inférieur. Les vecteurs de mouvement restants à chaque niveau sont propagés et utilisés comme vecteurs de mouvement initiaux au niveau inférieur suivant. Par conséquent, la possibilité de tomber dans les minima locaux peut être considérablement réduite. Les résultats de simulation montrent que la méthode proposée présente d'excellentes performances avec une complexité de calcul réduite.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Ji-Hong KIM, Woo-Jin SONG, "A Hierarchical Block Matching Algorithm Using Selective Elimination of Candidate Motion Vectors" in IEICE TRANSACTIONS on Information,
vol. E82-D, no. 5, pp. 985-992, May 1999, doi: .
Abstract: In this paper, a new hierarchical block matching algorithm using mean and difference pyramids is presented. The detection of motion vectors at each level of the pyramid is accomplished by selectively eliminating the candidate motion vectors that cannot provide the best match at the next lower level. The remaining motion vectors at each level are propagated and used as the initial motion vectors at the next lower level. Therefore, the possibility of falling into local minima can be significantly reduced. The simulation results show that the proposed method has excellent performance with reduced computational complexity.
URL: https://global.ieice.org/en_transactions/information/10.1587/e82-d_5_985/_p
Copier
@ARTICLE{e82-d_5_985,
author={Ji-Hong KIM, Woo-Jin SONG, },
journal={IEICE TRANSACTIONS on Information},
title={A Hierarchical Block Matching Algorithm Using Selective Elimination of Candidate Motion Vectors},
year={1999},
volume={E82-D},
number={5},
pages={985-992},
abstract={In this paper, a new hierarchical block matching algorithm using mean and difference pyramids is presented. The detection of motion vectors at each level of the pyramid is accomplished by selectively eliminating the candidate motion vectors that cannot provide the best match at the next lower level. The remaining motion vectors at each level are propagated and used as the initial motion vectors at the next lower level. Therefore, the possibility of falling into local minima can be significantly reduced. The simulation results show that the proposed method has excellent performance with reduced computational complexity.},
keywords={},
doi={},
ISSN={},
month={May},}
Copier
TY - JOUR
TI - A Hierarchical Block Matching Algorithm Using Selective Elimination of Candidate Motion Vectors
T2 - IEICE TRANSACTIONS on Information
SP - 985
EP - 992
AU - Ji-Hong KIM
AU - Woo-Jin SONG
PY - 1999
DO -
JO - IEICE TRANSACTIONS on Information
SN -
VL - E82-D
IS - 5
JA - IEICE TRANSACTIONS on Information
Y1 - May 1999
AB - In this paper, a new hierarchical block matching algorithm using mean and difference pyramids is presented. The detection of motion vectors at each level of the pyramid is accomplished by selectively eliminating the candidate motion vectors that cannot provide the best match at the next lower level. The remaining motion vectors at each level are propagated and used as the initial motion vectors at the next lower level. Therefore, the possibility of falling into local minima can be significantly reduced. The simulation results show that the proposed method has excellent performance with reduced computational complexity.
ER -