The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Dans cet article, nous présentons une méthode robuste de détection de petits objets, que nous appelons « Frequency Pattern Emphasis Subtraction (FPES) », pour la surveillance de zones étendues telles que celles des ports, des rivières et des installations industrielles. Pour obtenir une détection robuste dans des conditions environnementales changeantes, telles que le niveau d'éclairement, la météo et les vibrations de la caméra, notre méthode distingue les objets cibles de l'arrière-plan et du bruit en fonction des différences de composantes de fréquence entre eux. Les résultats de l'évaluation démontrent que notre méthode a détecté plus de 95 % des objets cibles dans les images de grandes zones de surveillance allant de 30 à 75 mètres en leur centre.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Daisuke ABE, Eigo SEGAWA, Osafumi NAKAYAMA, Morito SHIOHARA, Shigeru SASAKI, Nobuyuki SUGANO, Hajime KANNO, "Robust Small-Object Detection for Outdoor Wide-Area Surveillance" in IEICE TRANSACTIONS on Information,
vol. E91-D, no. 7, pp. 1922-1928, July 2008, doi: 10.1093/ietisy/e91-d.7.1922.
Abstract: In this paper, we present a robust small-object detection method, which we call "Frequency Pattern Emphasis Subtraction (FPES)", for wide-area surveillance such as that of harbors, rivers, and plant premises. For achieving robust detection under changes in environmental conditions, such as illuminance level, weather, and camera vibration, our method distinguishes target objects from background and noise based on the differences in frequency components between them. The evaluation results demonstrate that our method detected more than 95% of target objects in the images of large surveillance areas ranging from 30-75 meters at their center.
URL: https://global.ieice.org/en_transactions/information/10.1093/ietisy/e91-d.7.1922/_p
Copier
@ARTICLE{e91-d_7_1922,
author={Daisuke ABE, Eigo SEGAWA, Osafumi NAKAYAMA, Morito SHIOHARA, Shigeru SASAKI, Nobuyuki SUGANO, Hajime KANNO, },
journal={IEICE TRANSACTIONS on Information},
title={Robust Small-Object Detection for Outdoor Wide-Area Surveillance},
year={2008},
volume={E91-D},
number={7},
pages={1922-1928},
abstract={In this paper, we present a robust small-object detection method, which we call "Frequency Pattern Emphasis Subtraction (FPES)", for wide-area surveillance such as that of harbors, rivers, and plant premises. For achieving robust detection under changes in environmental conditions, such as illuminance level, weather, and camera vibration, our method distinguishes target objects from background and noise based on the differences in frequency components between them. The evaluation results demonstrate that our method detected more than 95% of target objects in the images of large surveillance areas ranging from 30-75 meters at their center.},
keywords={},
doi={10.1093/ietisy/e91-d.7.1922},
ISSN={1745-1361},
month={July},}
Copier
TY - JOUR
TI - Robust Small-Object Detection for Outdoor Wide-Area Surveillance
T2 - IEICE TRANSACTIONS on Information
SP - 1922
EP - 1928
AU - Daisuke ABE
AU - Eigo SEGAWA
AU - Osafumi NAKAYAMA
AU - Morito SHIOHARA
AU - Shigeru SASAKI
AU - Nobuyuki SUGANO
AU - Hajime KANNO
PY - 2008
DO - 10.1093/ietisy/e91-d.7.1922
JO - IEICE TRANSACTIONS on Information
SN - 1745-1361
VL - E91-D
IS - 7
JA - IEICE TRANSACTIONS on Information
Y1 - July 2008
AB - In this paper, we present a robust small-object detection method, which we call "Frequency Pattern Emphasis Subtraction (FPES)", for wide-area surveillance such as that of harbors, rivers, and plant premises. For achieving robust detection under changes in environmental conditions, such as illuminance level, weather, and camera vibration, our method distinguishes target objects from background and noise based on the differences in frequency components between them. The evaluation results demonstrate that our method detected more than 95% of target objects in the images of large surveillance areas ranging from 30-75 meters at their center.
ER -