The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Cet article aborde une application de la théorie des jeux potentiels à un problème de couverture de capteurs mobiles sensibles à la puissance, où chaque capteur tente de maximiser une probabilité de détection de cible dans un espace de mission convexe. La probabilité de détection de cible dépend d'une tension de détection de chaque capteur mobile ainsi que de sa position actuelle. Même si une tension de détection plus élevée améliore la probabilité de détection de la cible, cela nécessite une consommation d'énergie plus élevée. Dans cet article, nous supposons que les capteurs mobiles ont différentes capacités de détection d'une cible et qu'ils peuvent modifier de manière adaptative les zones de détection en ajustant leurs tensions de détection. Nous considérons une fonction objective pour évaluer un compromis entre l'amélioration de la probabilité de détection de la cible et la réduction de la consommation électrique totale de tous les capteurs. Nous représentons une tension de détection et une position de chaque capteur mobile en utilisant une coordonnée barycentrique sur un espace stratégique étendu. Ensuite, le problème de couverture des capteurs peut être formulé comme un jeu potentiel dans lequel la fonction objectif consciente du pouvoir et les coordonnées barycentriques correspondent respectivement à une fonction potentielle et aux stratégies mixtes des joueurs. On sait que tous les maximiseurs locaux d’une fonction potentielle dans un jeu de potentiel sont des équilibres de dynamique de réplicateur. Sur la base de cette propriété de jeux potentiels, nous proposons un contrôle décentralisé pour le problème de couverture des capteurs sensibles à la puissance, de sorte que chaque capteur mobile trouve une position et une tension de détection localement optimales en mettant à jour ses coordonnées barycentriques à l'aide de la dynamique du réplicateur.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Naoki HAYASHI, Toshimitsu USHIO, Takafumi KANAZAWA, "Potential Game Theoretic Approach to Power-Aware Mobile Sensor Coverage Problem" in IEICE TRANSACTIONS on Fundamentals,
vol. E94-A, no. 3, pp. 929-936, March 2011, doi: 10.1587/transfun.E94.A.929.
Abstract: This paper addresses an application of the potential game theory to a power-aware mobile sensor coverage problem where each sensor tries to maximize a probability of target detection in a convex mission space. The probability of target detection depends on a sensing voltage of each mobile sensor as well as its current position. While a higher sensing voltage improves the target detection probability, this requires more power consumption. In this paper, we assume that mobile sensors have different sensing capabilities of detecting a target and they can adaptively change sensing areas by adjusting their sensing voltages. We consider an objective function to evaluate a trade-off between improving the target detection probability and reducing total power consumption of all sensors. We represent a sensing voltage and a position of each mobile sensor using a barycentric coordinate over an extended strategy space. Then, the sensor coverage problem can be formulated as a potential game where the power-aware objective function and the barycentric coordinates correspond to a potential function and players' mixed strategies, respectively. It is known that all local maximizers of a potential function in a potential game are equilibria of replicator dynamics. Based on this property of potential games, we propose decentralized control for the power-aware sensor coverage problem such that each mobile sensor finds a locally optimal position and sensing voltage by updating its barycentric coordinate using replicator dynamics.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/transfun.E94.A.929/_p
Copier
@ARTICLE{e94-a_3_929,
author={Naoki HAYASHI, Toshimitsu USHIO, Takafumi KANAZAWA, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Potential Game Theoretic Approach to Power-Aware Mobile Sensor Coverage Problem},
year={2011},
volume={E94-A},
number={3},
pages={929-936},
abstract={This paper addresses an application of the potential game theory to a power-aware mobile sensor coverage problem where each sensor tries to maximize a probability of target detection in a convex mission space. The probability of target detection depends on a sensing voltage of each mobile sensor as well as its current position. While a higher sensing voltage improves the target detection probability, this requires more power consumption. In this paper, we assume that mobile sensors have different sensing capabilities of detecting a target and they can adaptively change sensing areas by adjusting their sensing voltages. We consider an objective function to evaluate a trade-off between improving the target detection probability and reducing total power consumption of all sensors. We represent a sensing voltage and a position of each mobile sensor using a barycentric coordinate over an extended strategy space. Then, the sensor coverage problem can be formulated as a potential game where the power-aware objective function and the barycentric coordinates correspond to a potential function and players' mixed strategies, respectively. It is known that all local maximizers of a potential function in a potential game are equilibria of replicator dynamics. Based on this property of potential games, we propose decentralized control for the power-aware sensor coverage problem such that each mobile sensor finds a locally optimal position and sensing voltage by updating its barycentric coordinate using replicator dynamics.},
keywords={},
doi={10.1587/transfun.E94.A.929},
ISSN={1745-1337},
month={March},}
Copier
TY - JOUR
TI - Potential Game Theoretic Approach to Power-Aware Mobile Sensor Coverage Problem
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 929
EP - 936
AU - Naoki HAYASHI
AU - Toshimitsu USHIO
AU - Takafumi KANAZAWA
PY - 2011
DO - 10.1587/transfun.E94.A.929
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E94-A
IS - 3
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - March 2011
AB - This paper addresses an application of the potential game theory to a power-aware mobile sensor coverage problem where each sensor tries to maximize a probability of target detection in a convex mission space. The probability of target detection depends on a sensing voltage of each mobile sensor as well as its current position. While a higher sensing voltage improves the target detection probability, this requires more power consumption. In this paper, we assume that mobile sensors have different sensing capabilities of detecting a target and they can adaptively change sensing areas by adjusting their sensing voltages. We consider an objective function to evaluate a trade-off between improving the target detection probability and reducing total power consumption of all sensors. We represent a sensing voltage and a position of each mobile sensor using a barycentric coordinate over an extended strategy space. Then, the sensor coverage problem can be formulated as a potential game where the power-aware objective function and the barycentric coordinates correspond to a potential function and players' mixed strategies, respectively. It is known that all local maximizers of a potential function in a potential game are equilibria of replicator dynamics. Based on this property of potential games, we propose decentralized control for the power-aware sensor coverage problem such that each mobile sensor finds a locally optimal position and sensing voltage by updating its barycentric coordinate using replicator dynamics.
ER -