The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Ce travail étend la méthodologie de détection du taux de fausses alarmes constant (CFAR) à la détection en présence de deux sources d'interférences indépendantes de puissances inconnues. Le détecteur proposé est analysé en supposant que les structures de covariance du fouillis et du brouilleur sont connues et ont des propriétés de rang relativement faibles. L’approche basée sur un sous-espace de dimension limitée conduit à un détecteur robuste de taux de fausses alarmes (RFAR). L'algorithme de détection RFAR est développé par une adaptation et une extension de la méthode des composantes principales de Hotelling. La perte de performance du détecteur et la perte de stabilité des fausses alarmes dues à des parasites inconnus et à des puissances de brouilleur ont été évaluées à titre d'exemple de scénario.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Victor GOLIKOV, Olga LEBEDEVA, "A Robust Detection in the Presence of Clutter and Jammer Signals with Unknown Powers" in IEICE TRANSACTIONS on Fundamentals,
vol. E94-A, no. 2, pp. 817-822, February 2011, doi: 10.1587/transfun.E94.A.817.
Abstract: This work extends the constant false alarm rate (CFAR) detection methodology to detection in the presence of two independent interference sources with unknown powers. The proposed detector is analyzed on the assumption that clutter and jammer covariance structures are known and have relatively low rank properties. The limited-dimensional subspace-based approach leads to a robust false alarm rate (RFAR) detector. The RFAR detection algorithm is developed by an adaptation and extension of Hotelling's principal-component method. The detector performance loss and false alarm stability loss to unknown clutter and jammer powers have been evaluated for example scenario.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/transfun.E94.A.817/_p
Copier
@ARTICLE{e94-a_2_817,
author={Victor GOLIKOV, Olga LEBEDEVA, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={A Robust Detection in the Presence of Clutter and Jammer Signals with Unknown Powers},
year={2011},
volume={E94-A},
number={2},
pages={817-822},
abstract={This work extends the constant false alarm rate (CFAR) detection methodology to detection in the presence of two independent interference sources with unknown powers. The proposed detector is analyzed on the assumption that clutter and jammer covariance structures are known and have relatively low rank properties. The limited-dimensional subspace-based approach leads to a robust false alarm rate (RFAR) detector. The RFAR detection algorithm is developed by an adaptation and extension of Hotelling's principal-component method. The detector performance loss and false alarm stability loss to unknown clutter and jammer powers have been evaluated for example scenario.},
keywords={},
doi={10.1587/transfun.E94.A.817},
ISSN={1745-1337},
month={February},}
Copier
TY - JOUR
TI - A Robust Detection in the Presence of Clutter and Jammer Signals with Unknown Powers
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 817
EP - 822
AU - Victor GOLIKOV
AU - Olga LEBEDEVA
PY - 2011
DO - 10.1587/transfun.E94.A.817
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E94-A
IS - 2
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - February 2011
AB - This work extends the constant false alarm rate (CFAR) detection methodology to detection in the presence of two independent interference sources with unknown powers. The proposed detector is analyzed on the assumption that clutter and jammer covariance structures are known and have relatively low rank properties. The limited-dimensional subspace-based approach leads to a robust false alarm rate (RFAR) detector. The RFAR detection algorithm is developed by an adaptation and extension of Hotelling's principal-component method. The detector performance loss and false alarm stability loss to unknown clutter and jammer powers have been evaluated for example scenario.
ER -