The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Un contrôleur prédictif modèle min-max est développé dans cet article pour le suivi du contrôle de robots mobiles à roues (WMR) soumis à la violation de contraintes non holonomiques dans un environnement sans obstacles. Le problème est simplifié en négligeant la dynamique du véhicule et en ne considérant que le système de direction. Le modèle cinématique d'erreur de suivi linéarisé avec présence de perturbations incertaines est formé dans le cadre du robot. Et puis, la politique de contrôle est dérivée du pire des cas d’optimisation d’une fonction de coût quadratique, qui pénalise l’erreur de suivi et les variables de contrôle à chaque temps d’échantillonnage sur un horizon fini. En conséquence, la séquence d’entrée doit être réalisable pour toutes les réalisations possibles de perturbations. Les performances de l'algorithme de contrôle sont vérifiées via des simulations informatiques avec une trajectoire prédéfinie et sont comparées à une loi de contrôle commune en mode glissant à temps discret. Le résultat montre que la méthode proposée présente de meilleures performances de suivi et de convergence.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Yu GAO, Kil To CHONG, "Min-Max Model Predictive Controller for Trajectory Tracking of a Wheeled Mobile Robot with Slipping Effects" in IEICE TRANSACTIONS on Fundamentals,
vol. E94-A, no. 2, pp. 680-687, February 2011, doi: 10.1587/transfun.E94.A.680.
Abstract: A min-max model predictive controller is developed in this paper for tracking control of wheeled mobile robots (WMRs) subject to the violation of nonholonomic constraints in an environment without obstacles. The problem is simplified by neglecting the vehicle dynamics and considering only the steering system. The linearized tracking-error kinematic model with the presence of uncertain disturbances is formed in the frame of the robot. And then, the control policy is derived from the worst-case optimization of a quadratic cost function, which penalizes the tracking error and control variables in each sampling time over a finite horizon. As a result, the input sequence must be feasible for all possible disturbance realizations. The performance of the control algorithm is verified via the computer simulations with a predefined trajectory and is compared to a common discrete-time sliding mode control law. The result shows that the proposed method has a better tracking performance and convergence.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/transfun.E94.A.680/_p
Copier
@ARTICLE{e94-a_2_680,
author={Yu GAO, Kil To CHONG, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Min-Max Model Predictive Controller for Trajectory Tracking of a Wheeled Mobile Robot with Slipping Effects},
year={2011},
volume={E94-A},
number={2},
pages={680-687},
abstract={A min-max model predictive controller is developed in this paper for tracking control of wheeled mobile robots (WMRs) subject to the violation of nonholonomic constraints in an environment without obstacles. The problem is simplified by neglecting the vehicle dynamics and considering only the steering system. The linearized tracking-error kinematic model with the presence of uncertain disturbances is formed in the frame of the robot. And then, the control policy is derived from the worst-case optimization of a quadratic cost function, which penalizes the tracking error and control variables in each sampling time over a finite horizon. As a result, the input sequence must be feasible for all possible disturbance realizations. The performance of the control algorithm is verified via the computer simulations with a predefined trajectory and is compared to a common discrete-time sliding mode control law. The result shows that the proposed method has a better tracking performance and convergence.},
keywords={},
doi={10.1587/transfun.E94.A.680},
ISSN={1745-1337},
month={February},}
Copier
TY - JOUR
TI - Min-Max Model Predictive Controller for Trajectory Tracking of a Wheeled Mobile Robot with Slipping Effects
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 680
EP - 687
AU - Yu GAO
AU - Kil To CHONG
PY - 2011
DO - 10.1587/transfun.E94.A.680
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E94-A
IS - 2
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - February 2011
AB - A min-max model predictive controller is developed in this paper for tracking control of wheeled mobile robots (WMRs) subject to the violation of nonholonomic constraints in an environment without obstacles. The problem is simplified by neglecting the vehicle dynamics and considering only the steering system. The linearized tracking-error kinematic model with the presence of uncertain disturbances is formed in the frame of the robot. And then, the control policy is derived from the worst-case optimization of a quadratic cost function, which penalizes the tracking error and control variables in each sampling time over a finite horizon. As a result, the input sequence must be feasible for all possible disturbance realizations. The performance of the control algorithm is verified via the computer simulations with a predefined trajectory and is compared to a common discrete-time sliding mode control law. The result shows that the proposed method has a better tracking performance and convergence.
ER -