The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
À mesure que de grands progrès ont été réalisés dans la technologie des processus CMOS au cours des 20 dernières années, les circuits RF CMOS fonctionnant dans la bande micro-ondes se sont rapidement développés, passant du niveau des circuits composants aux niveaux des émetteurs-récepteurs multibandes/multimodes. Au cours des dix prochaines années, il est fort probable que les dispositifs suivants seront réalisés : (i) des émetteurs-récepteurs polyvalents tels que ceux utilisés dans les radios définies par logiciel (SDR), les radios cognitives (CR) et les radios reconfigurables (RR) ; (ii) les systèmes qui fonctionnent dans la région des ondes millimétriques ou térahertz et permettent une transmission de données à grande vitesse et de grande capacité ; et (iii) des systèmes de communication RF microminiaturisés de faible puissance qui seront largement utilisés dans notre vie quotidienne. Cependant, la technologie classique de conception de circuits RF analogiques ne peut pas être utilisée pour concevoir des circuits pour les dispositifs mentionnés ci-dessus car elle ne peut être appliquée que dans le cas de signaux de tension continue et de signaux temporels continus ; par conséquent, il est nécessaire d'intégrer la conception de circuits numériques à grande vitesse, basée sur l'utilisation de tensions discrètes et du domaine temporel discret, avec une conception analogique, afin à la fois d'obtenir un fonctionnement à large bande et de compenser les distorsions du signal ainsi que variations du processus, de la tension d’alimentation et de la température. De plus, comme on pense qu'une petite intégration de l'antenne et du circuit d'interface est indispensable pour réaliser des systèmes de communication micro RF miniaturisés, la construction de l'environnement de conception intégré avec le dispositif Micro Electro Mechanical Systems (MEMS), etc. des différents types de dispositifs devient plus important. Dans cet article, l'histoire et l'état actuel du développement des circuits RF CMOS sont passés en revue et l'état futur des circuits RF CMOS est prédit.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Noboru ISHIHARA, Shuhei AMAKAWA, Kazuya MASU, "RF CMOS Integrated Circuit: History, Current Status and Future Prospects" in IEICE TRANSACTIONS on Fundamentals,
vol. E94-A, no. 2, pp. 556-567, February 2011, doi: 10.1587/transfun.E94.A.556.
Abstract: As great advancements have been made in CMOS process technology over the past 20 years, RF CMOS circuits operating in the microwave band have rapidly developed from component circuit levels to multiband/multimode transceiver levels. In the next ten years, it is highly likely that the following devices will be realized: (i) versatile transceivers such as those used in software-defined radios (SDR), cognitive radios (CR), and reconfigurable radios (RR); (ii) systems that operate in the millimeter-wave or terahertz-wave region and achieve high speed and large-capacity data transmission; and (iii) microminiaturized low-power RF communication systems that will be extensively used in our everyday lives. However, classical technology for designing analog RF circuits cannot be used to design circuits for the abovementioned devices since it can be applied only in the case of continuous voltage and continuous time signals; therefore, it is necessary to integrate the design of high-speed digital circuits, which is based on the use of discrete voltages and the discrete time domain, with analog design, in order to both achieve wideband operation and compensate for signal distortions as well as variations in process, power supply voltage, and temperature. Moreover, as it is thought that small integration of the antenna and the interface circuit is indispensable to achieve miniaturized micro RF communication systems, the construction of the integrated design environment with the Micro Electro Mechanical Systems (MEMS) device etc. of the different kind devices becomes more important. In this paper, the history and the current status of the development of RF CMOS circuits are reviewed, and the future status of RF CMOS circuits is predicted.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/transfun.E94.A.556/_p
Copier
@ARTICLE{e94-a_2_556,
author={Noboru ISHIHARA, Shuhei AMAKAWA, Kazuya MASU, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={RF CMOS Integrated Circuit: History, Current Status and Future Prospects},
year={2011},
volume={E94-A},
number={2},
pages={556-567},
abstract={As great advancements have been made in CMOS process technology over the past 20 years, RF CMOS circuits operating in the microwave band have rapidly developed from component circuit levels to multiband/multimode transceiver levels. In the next ten years, it is highly likely that the following devices will be realized: (i) versatile transceivers such as those used in software-defined radios (SDR), cognitive radios (CR), and reconfigurable radios (RR); (ii) systems that operate in the millimeter-wave or terahertz-wave region and achieve high speed and large-capacity data transmission; and (iii) microminiaturized low-power RF communication systems that will be extensively used in our everyday lives. However, classical technology for designing analog RF circuits cannot be used to design circuits for the abovementioned devices since it can be applied only in the case of continuous voltage and continuous time signals; therefore, it is necessary to integrate the design of high-speed digital circuits, which is based on the use of discrete voltages and the discrete time domain, with analog design, in order to both achieve wideband operation and compensate for signal distortions as well as variations in process, power supply voltage, and temperature. Moreover, as it is thought that small integration of the antenna and the interface circuit is indispensable to achieve miniaturized micro RF communication systems, the construction of the integrated design environment with the Micro Electro Mechanical Systems (MEMS) device etc. of the different kind devices becomes more important. In this paper, the history and the current status of the development of RF CMOS circuits are reviewed, and the future status of RF CMOS circuits is predicted.},
keywords={},
doi={10.1587/transfun.E94.A.556},
ISSN={1745-1337},
month={February},}
Copier
TY - JOUR
TI - RF CMOS Integrated Circuit: History, Current Status and Future Prospects
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 556
EP - 567
AU - Noboru ISHIHARA
AU - Shuhei AMAKAWA
AU - Kazuya MASU
PY - 2011
DO - 10.1587/transfun.E94.A.556
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E94-A
IS - 2
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - February 2011
AB - As great advancements have been made in CMOS process technology over the past 20 years, RF CMOS circuits operating in the microwave band have rapidly developed from component circuit levels to multiband/multimode transceiver levels. In the next ten years, it is highly likely that the following devices will be realized: (i) versatile transceivers such as those used in software-defined radios (SDR), cognitive radios (CR), and reconfigurable radios (RR); (ii) systems that operate in the millimeter-wave or terahertz-wave region and achieve high speed and large-capacity data transmission; and (iii) microminiaturized low-power RF communication systems that will be extensively used in our everyday lives. However, classical technology for designing analog RF circuits cannot be used to design circuits for the abovementioned devices since it can be applied only in the case of continuous voltage and continuous time signals; therefore, it is necessary to integrate the design of high-speed digital circuits, which is based on the use of discrete voltages and the discrete time domain, with analog design, in order to both achieve wideband operation and compensate for signal distortions as well as variations in process, power supply voltage, and temperature. Moreover, as it is thought that small integration of the antenna and the interface circuit is indispensable to achieve miniaturized micro RF communication systems, the construction of the integrated design environment with the Micro Electro Mechanical Systems (MEMS) device etc. of the different kind devices becomes more important. In this paper, the history and the current status of the development of RF CMOS circuits are reviewed, and the future status of RF CMOS circuits is predicted.
ER -