The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Lorsqu'une séquence de référence de décalage zéro est définie, le i-la séquence décalée en bits a un décalage de phase i par rapport à la séquence de référence. Dans cette lettre, nous proposons un nouvel algorithme pour calculer les déphasages d'une séquence binaire périodique en utilisant le concept d'ordre et d'indice d'un entier basé sur l'approche théorique des nombres. Nous définissons une fonction d'évaluation de décalage qui est utilisée pour calculer le décalage de phase et dérivons les propriétés de la fonction. Une fois la fonction calculée, le déphasage de la séquence est simplement obtenu en prenant l'indice de celle-ci. Le nouvel algorithme surmonte les restrictions trouvées dans les méthodes conventionnelles sur la longueur et le nombre de « 0 » et de « 1 » dans les codes binaires. Son application à l'acquisition de code est également étudiée pour montrer l'utilité de la méthode proposée.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Young-Joon SONG, "Phase Offsets for Binary Sequences Using Order and Index" in IEICE TRANSACTIONS on Fundamentals,
vol. E93-A, no. 9, pp. 1697-1699, September 2010, doi: 10.1587/transfun.E93.A.1697.
Abstract: When a zero offset reference sequence is defined, the i-bit shifted sequence has phase offset i with respect to the reference sequence. In this letter, we propose a new algorithm to compute phase offsets for a periodic binary sequence using the concept of order and index of an integer based on the number theoretical approach. We define an offset evaluation function that is used to calculate the phase offset, and derive properties of the function. Once the function is computed, the phase offset of the sequence is simply obtained by taking the index of it. The new algorithm overcomes the restrictions found in conventional methods on the length and the number of '0's and '1's in binary codes. Its application to the code acquisition is also investigated to show the proposed method is useful.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/transfun.E93.A.1697/_p
Copier
@ARTICLE{e93-a_9_1697,
author={Young-Joon SONG, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Phase Offsets for Binary Sequences Using Order and Index},
year={2010},
volume={E93-A},
number={9},
pages={1697-1699},
abstract={When a zero offset reference sequence is defined, the i-bit shifted sequence has phase offset i with respect to the reference sequence. In this letter, we propose a new algorithm to compute phase offsets for a periodic binary sequence using the concept of order and index of an integer based on the number theoretical approach. We define an offset evaluation function that is used to calculate the phase offset, and derive properties of the function. Once the function is computed, the phase offset of the sequence is simply obtained by taking the index of it. The new algorithm overcomes the restrictions found in conventional methods on the length and the number of '0's and '1's in binary codes. Its application to the code acquisition is also investigated to show the proposed method is useful.},
keywords={},
doi={10.1587/transfun.E93.A.1697},
ISSN={1745-1337},
month={September},}
Copier
TY - JOUR
TI - Phase Offsets for Binary Sequences Using Order and Index
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 1697
EP - 1699
AU - Young-Joon SONG
PY - 2010
DO - 10.1587/transfun.E93.A.1697
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E93-A
IS - 9
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - September 2010
AB - When a zero offset reference sequence is defined, the i-bit shifted sequence has phase offset i with respect to the reference sequence. In this letter, we propose a new algorithm to compute phase offsets for a periodic binary sequence using the concept of order and index of an integer based on the number theoretical approach. We define an offset evaluation function that is used to calculate the phase offset, and derive properties of the function. Once the function is computed, the phase offset of the sequence is simply obtained by taking the index of it. The new algorithm overcomes the restrictions found in conventional methods on the length and the number of '0's and '1's in binary codes. Its application to the code acquisition is also investigated to show the proposed method is useful.
ER -