The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Laisser nous V(φ) être un sous-espace invariant par décalage de L2(R) avec un générateur de Riesz ou de trame φ(t). On prend φ(t) de manière à ce que l'expansion régulière de l'échantillonnage : f(t) =
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Kil Hyun KWON, Jaekyu LEE, "Irregular Sampling on Shift Invariant Spaces" in IEICE TRANSACTIONS on Fundamentals,
vol. E93-A, no. 6, pp. 1163-1170, June 2010, doi: 10.1587/transfun.E93.A.1163.
Abstract: Let V(φ) be a shift invariant subspace of L2(R) with a Riesz or frame generator φ(t). We take φ(t) suitably so that the regular sampling expansion : f(t) =
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/transfun.E93.A.1163/_p
Copier
@ARTICLE{e93-a_6_1163,
author={Kil Hyun KWON, Jaekyu LEE, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Irregular Sampling on Shift Invariant Spaces},
year={2010},
volume={E93-A},
number={6},
pages={1163-1170},
abstract={Let V(φ) be a shift invariant subspace of L2(R) with a Riesz or frame generator φ(t). We take φ(t) suitably so that the regular sampling expansion : f(t) =
keywords={},
doi={10.1587/transfun.E93.A.1163},
ISSN={1745-1337},
month={June},}
Copier
TY - JOUR
TI - Irregular Sampling on Shift Invariant Spaces
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 1163
EP - 1170
AU - Kil Hyun KWON
AU - Jaekyu LEE
PY - 2010
DO - 10.1587/transfun.E93.A.1163
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E93-A
IS - 6
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - June 2010
AB - Let V(φ) be a shift invariant subspace of L2(R) with a Riesz or frame generator φ(t). We take φ(t) suitably so that the regular sampling expansion : f(t) =
ER -