The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
La qualité de l’image d’une impression en demi-teintes est considérablement influencée par les caractéristiques optiques du papier. La diffusion de la lumière dans le papier produit un grossissement optique des points, qui a une influence significative sur les reproductions de tons et de couleurs de l'impression en demi-teintes. La diffusion de la lumière peut être quantifiée par la fonction de transfert de modulation (MTF) du papier. Plusieurs méthodes ont été proposées pour mesurer la FTM du papier. Cependant, ces méthodes présentent des problèmes d’efficacité ou de précision de la mesure. Dans cet article, une nouvelle méthode est proposée pour mesurer la FTM du papier de manière efficace et précise, et l'effet d'agrandissement du point sur l'impression en demi-teintes est analysé. La FTM est calculée à partir du rapport dans le domaine des fréquences spatiales entre les réponses de la lumière incidente du crayon au papier et celles du réflecteur spéculaire parfait. Puisque la caractéristique de fréquence spatiale de la lumière de crayon d'entrée peut être obtenue à partir de la réponse d'un réflecteur spéculaire parfait, il n'est pas nécessaire de produire l'illuminant d'entrée ayant une caractéristique d'impulsion « idéale ». Notre méthode est expérimentalement efficace puisque seules deux images doivent être mesurées. En outre, il peut mesurer avec précision puisque les données peuvent être approchées par le modèle MTF conventionnel. Ensuite, nous prédisons la distribution de réflectance de l'impression en demi-teinte en utilisant la MTF mesurée en microscopie afin d'analyser l'effet de gain de point puisqu'il peut être clairement observé dans la microstructure en demi-teinte. Enfin, une simulation est effectuée pour supprimer l'effet de diffusion de la lumière de l'image prédite. Puisque l’image simulée n’est pas affectée par le gain de point optique, elle peut être appliquée pour analyser la couverture réelle des points.
Masayuki UKISHIMA
Hitomi KANEKO
Toshiya NAKAGUCHI
Norimichi TSUMURA
Markku HAUTA-KASARI
Jussi PARKKINEN
Yoichi MIYAKE
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Masayuki UKISHIMA, Hitomi KANEKO, Toshiya NAKAGUCHI, Norimichi TSUMURA, Markku HAUTA-KASARI, Jussi PARKKINEN, Yoichi MIYAKE, "A Simple Method to Measure MTF of Paper and Its Application for Dot Gain Analysis" in IEICE TRANSACTIONS on Fundamentals,
vol. E92-A, no. 12, pp. 3328-3335, December 2009, doi: 10.1587/transfun.E92.A.3328.
Abstract: Image quality of halftone print is significantly influenced by optical characteristics of paper. Light scattering in paper produces optical dot gain, which has a significant influence on the tone and color reproductions of halftone print. The light scattering can be quantified by the Modulation Transfer Function (MTF) of paper. Several methods have been proposed to measure the MTF of paper. However, these methods have problems in efficiency or accuracy in the measurement. In this article, a new method is proposed to measure the MTF of paper efficiently and accurately, and the dot gain effect on halftone print is analyzed. The MTF is calculated from the ratio in spatial frequency domain between the responses of incident pencil light to paper and the perfect specular reflector. Since the spatial frequency characteristic of input pencil light can be obtained from the response of perfect specular reflector, it does not need to produce the input illuminant having "ideal" impulse characteristic. Our method is experimentally efficient since only two images need to be measured. Besides it can measure accurately since the data can be approximated by the conventional MTF model. Next, we predict the reflectance distribution of halftone print using the measured MTF in microscopy in order to analyze the dot gain effect since it can clearly be observed in halftone micro-structure. Finally, a simulation is carried out to remove the light scattering effect from the predicted image. Since the simulated image is not affected by the optical dot gain, it can be applied to analyze the real dot coverage.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/transfun.E92.A.3328/_p
Copier
@ARTICLE{e92-a_12_3328,
author={Masayuki UKISHIMA, Hitomi KANEKO, Toshiya NAKAGUCHI, Norimichi TSUMURA, Markku HAUTA-KASARI, Jussi PARKKINEN, Yoichi MIYAKE, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={A Simple Method to Measure MTF of Paper and Its Application for Dot Gain Analysis},
year={2009},
volume={E92-A},
number={12},
pages={3328-3335},
abstract={Image quality of halftone print is significantly influenced by optical characteristics of paper. Light scattering in paper produces optical dot gain, which has a significant influence on the tone and color reproductions of halftone print. The light scattering can be quantified by the Modulation Transfer Function (MTF) of paper. Several methods have been proposed to measure the MTF of paper. However, these methods have problems in efficiency or accuracy in the measurement. In this article, a new method is proposed to measure the MTF of paper efficiently and accurately, and the dot gain effect on halftone print is analyzed. The MTF is calculated from the ratio in spatial frequency domain between the responses of incident pencil light to paper and the perfect specular reflector. Since the spatial frequency characteristic of input pencil light can be obtained from the response of perfect specular reflector, it does not need to produce the input illuminant having "ideal" impulse characteristic. Our method is experimentally efficient since only two images need to be measured. Besides it can measure accurately since the data can be approximated by the conventional MTF model. Next, we predict the reflectance distribution of halftone print using the measured MTF in microscopy in order to analyze the dot gain effect since it can clearly be observed in halftone micro-structure. Finally, a simulation is carried out to remove the light scattering effect from the predicted image. Since the simulated image is not affected by the optical dot gain, it can be applied to analyze the real dot coverage.},
keywords={},
doi={10.1587/transfun.E92.A.3328},
ISSN={1745-1337},
month={December},}
Copier
TY - JOUR
TI - A Simple Method to Measure MTF of Paper and Its Application for Dot Gain Analysis
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 3328
EP - 3335
AU - Masayuki UKISHIMA
AU - Hitomi KANEKO
AU - Toshiya NAKAGUCHI
AU - Norimichi TSUMURA
AU - Markku HAUTA-KASARI
AU - Jussi PARKKINEN
AU - Yoichi MIYAKE
PY - 2009
DO - 10.1587/transfun.E92.A.3328
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E92-A
IS - 12
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - December 2009
AB - Image quality of halftone print is significantly influenced by optical characteristics of paper. Light scattering in paper produces optical dot gain, which has a significant influence on the tone and color reproductions of halftone print. The light scattering can be quantified by the Modulation Transfer Function (MTF) of paper. Several methods have been proposed to measure the MTF of paper. However, these methods have problems in efficiency or accuracy in the measurement. In this article, a new method is proposed to measure the MTF of paper efficiently and accurately, and the dot gain effect on halftone print is analyzed. The MTF is calculated from the ratio in spatial frequency domain between the responses of incident pencil light to paper and the perfect specular reflector. Since the spatial frequency characteristic of input pencil light can be obtained from the response of perfect specular reflector, it does not need to produce the input illuminant having "ideal" impulse characteristic. Our method is experimentally efficient since only two images need to be measured. Besides it can measure accurately since the data can be approximated by the conventional MTF model. Next, we predict the reflectance distribution of halftone print using the measured MTF in microscopy in order to analyze the dot gain effect since it can clearly be observed in halftone micro-structure. Finally, a simulation is carried out to remove the light scattering effect from the predicted image. Since the simulated image is not affected by the optical dot gain, it can be applied to analyze the real dot coverage.
ER -