The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Dans cet article, nous proposons une nouvelle méthode de modélisation pour exprimer des systèmes hybrides à temps discret avec incertitude des paramètres sous la forme d'un modèle dynamique logique mixte (MLD). Dans l'analyse et le contrôle des systèmes hybrides, il existe des formulations de problèmes dans lesquelles des polyèdres convexes sont calculés, mais pour les systèmes de grande dimension, il est difficile de résoudre ces problèmes dans un temps de calcul pratique. L'idée clé de cet article est d'utiliser une méthode d'intervalle, qui est l'une des méthodes classiques de calcul numérique vérifié, et de considérer un intervalle comme une surapproximation d'un polyèdre convexe. En utilisant le modèle MLD obtenu, l'analyse et la synthèse de systèmes de contrôle robustes sont formulées.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Koichi KOBAYASHI, Kunihiko HIRAISHI, "MLD-Based Modeling of Hybrid Systems with Parameter Uncertainty" in IEICE TRANSACTIONS on Fundamentals,
vol. E92-A, no. 11, pp. 2745-2754, November 2009, doi: 10.1587/transfun.E92.A.2745.
Abstract: In this paper, we propose a new modeling method to express discrete-time hybrid systems with parameter uncertainty as a mixed logical dynamical (MLD) model. In analysis and control of hybrid systems, there are problem formulations in which convex polyhedra are computed, but for high-dimensional systems, it is difficult to solve these problems within a practical computation time. The key idea of this paper is to use an interval method, which is one of the classical methods in verified numerical computation, and to regard an interval as an over-approximation of a convex polyhedron. By using the obtained MLD model, analysis and synthesis of robust control systems are formulated.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/transfun.E92.A.2745/_p
Copier
@ARTICLE{e92-a_11_2745,
author={Koichi KOBAYASHI, Kunihiko HIRAISHI, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={MLD-Based Modeling of Hybrid Systems with Parameter Uncertainty},
year={2009},
volume={E92-A},
number={11},
pages={2745-2754},
abstract={In this paper, we propose a new modeling method to express discrete-time hybrid systems with parameter uncertainty as a mixed logical dynamical (MLD) model. In analysis and control of hybrid systems, there are problem formulations in which convex polyhedra are computed, but for high-dimensional systems, it is difficult to solve these problems within a practical computation time. The key idea of this paper is to use an interval method, which is one of the classical methods in verified numerical computation, and to regard an interval as an over-approximation of a convex polyhedron. By using the obtained MLD model, analysis and synthesis of robust control systems are formulated.},
keywords={},
doi={10.1587/transfun.E92.A.2745},
ISSN={1745-1337},
month={November},}
Copier
TY - JOUR
TI - MLD-Based Modeling of Hybrid Systems with Parameter Uncertainty
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 2745
EP - 2754
AU - Koichi KOBAYASHI
AU - Kunihiko HIRAISHI
PY - 2009
DO - 10.1587/transfun.E92.A.2745
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E92-A
IS - 11
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - November 2009
AB - In this paper, we propose a new modeling method to express discrete-time hybrid systems with parameter uncertainty as a mixed logical dynamical (MLD) model. In analysis and control of hybrid systems, there are problem formulations in which convex polyhedra are computed, but for high-dimensional systems, it is difficult to solve these problems within a practical computation time. The key idea of this paper is to use an interval method, which is one of the classical methods in verified numerical computation, and to regard an interval as an over-approximation of a convex polyhedron. By using the obtained MLD model, analysis and synthesis of robust control systems are formulated.
ER -