The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
La croissance rapide d’Internet offre aux gens d’énormes possibilités de collecte de données, de découverte de connaissances et de calcul coopératif. Cependant, cela pose également le problème de la fuite d’informations sensibles. Les particuliers comme les entreprises peuvent pâtir de la collecte massive de données et de la récupération d’informations par des parties méfiantes. Dans cet article, nous proposons un protocole préservant la confidentialité pour le clustering basé sur l'estimation de la densité du noyau distribué. Notre schéma applique la technique de perturbation des données aléatoires (RDP) et le partage de secrets vérifiables pour résoudre le problème de sécurité de l'estimation de la densité du noyau distribué dans [4] qui supposait une partie intermédiaire pour aider dans le calcul.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Chunhua SU, Feng BAO, Jianying ZHOU, Tsuyoshi TAKAGI, Kouichi SAKURAI, "Distributed Noise Generation for Density Estimation Based Clustering without Trusted Third Party" in IEICE TRANSACTIONS on Fundamentals,
vol. E92-A, no. 8, pp. 1868-1871, August 2009, doi: 10.1587/transfun.E92.A.1868.
Abstract: The rapid growth of the Internet provides people with tremendous opportunities for data collection, knowledge discovery and cooperative computation. However, it also brings the problem of sensitive information leakage. Both individuals and enterprises may suffer from the massive data collection and the information retrieval by distrusted parties. In this paper, we propose a privacy-preserving protocol for the distributed kernel density estimation-based clustering. Our scheme applies random data perturbation (RDP) technique and the verifiable secret sharing to solve the security problem of distributed kernel density estimation in [4] which assumed a mediate party to help in the computation.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/transfun.E92.A.1868/_p
Copier
@ARTICLE{e92-a_8_1868,
author={Chunhua SU, Feng BAO, Jianying ZHOU, Tsuyoshi TAKAGI, Kouichi SAKURAI, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Distributed Noise Generation for Density Estimation Based Clustering without Trusted Third Party},
year={2009},
volume={E92-A},
number={8},
pages={1868-1871},
abstract={The rapid growth of the Internet provides people with tremendous opportunities for data collection, knowledge discovery and cooperative computation. However, it also brings the problem of sensitive information leakage. Both individuals and enterprises may suffer from the massive data collection and the information retrieval by distrusted parties. In this paper, we propose a privacy-preserving protocol for the distributed kernel density estimation-based clustering. Our scheme applies random data perturbation (RDP) technique and the verifiable secret sharing to solve the security problem of distributed kernel density estimation in [4] which assumed a mediate party to help in the computation.},
keywords={},
doi={10.1587/transfun.E92.A.1868},
ISSN={1745-1337},
month={August},}
Copier
TY - JOUR
TI - Distributed Noise Generation for Density Estimation Based Clustering without Trusted Third Party
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 1868
EP - 1871
AU - Chunhua SU
AU - Feng BAO
AU - Jianying ZHOU
AU - Tsuyoshi TAKAGI
AU - Kouichi SAKURAI
PY - 2009
DO - 10.1587/transfun.E92.A.1868
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E92-A
IS - 8
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - August 2009
AB - The rapid growth of the Internet provides people with tremendous opportunities for data collection, knowledge discovery and cooperative computation. However, it also brings the problem of sensitive information leakage. Both individuals and enterprises may suffer from the massive data collection and the information retrieval by distrusted parties. In this paper, we propose a privacy-preserving protocol for the distributed kernel density estimation-based clustering. Our scheme applies random data perturbation (RDP) technique and the verifiable secret sharing to solve the security problem of distributed kernel density estimation in [4] which assumed a mediate party to help in the computation.
ER -