The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Les fonctions booléennes à rotation symétrique qui sont invariantes sous l'action d'un groupe cyclique ont été utilisées dans de nombreux cryptosystèmes différents. Cet article présente une nouvelle construction de fonctions booléennes symétriques à rotation impaire-variable équilibrée avec une immunité algébrique optimale. On vérifie que, au moins pour quelques petites variables, de telles fonctions ont un très bon comportement face aux attaques algébriques rapides. Comparée à certaines fonctions booléennes à rotation symétrique connues avec une immunité algébrique optimale, la nouvelle construction présente une non-linéarité vraiment meilleure. De plus, le degré algébrique des fonctions construites est également suffisamment élevé.
Yindong CHEN
Shantou University
Fei GUO
Shantou University
Hongyan XIANG
Shantou University
Weihong CAI
Shantou University
Xianmang HE
Dongguan University of Technology
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Yindong CHEN, Fei GUO, Hongyan XIANG, Weihong CAI, Xianmang HE, "Balanced Odd-Variable RSBFs with Optimum AI, High Nonlinearity and Good Behavior against FAAs" in IEICE TRANSACTIONS on Fundamentals,
vol. E102-A, no. 6, pp. 818-824, June 2019, doi: 10.1587/transfun.E102.A.818.
Abstract: Rotation symmetric Boolean functions which are invariant under the action of cyclic group have been used in many different cryptosystems. This paper presents a new construction of balanced odd-variable rotation symmetric Boolean functions with optimum algebraic immunity. It is checked that, at least for some small variables, such functions have very good behavior against fast algebraic attacks. Compared with some known rotation symmetric Boolean functions with optimum algebraic immunity, the new construction has really better nonlinearity. Further, the algebraic degree of the constructed functions is also high enough.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/transfun.E102.A.818/_p
Copier
@ARTICLE{e102-a_6_818,
author={Yindong CHEN, Fei GUO, Hongyan XIANG, Weihong CAI, Xianmang HE, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Balanced Odd-Variable RSBFs with Optimum AI, High Nonlinearity and Good Behavior against FAAs},
year={2019},
volume={E102-A},
number={6},
pages={818-824},
abstract={Rotation symmetric Boolean functions which are invariant under the action of cyclic group have been used in many different cryptosystems. This paper presents a new construction of balanced odd-variable rotation symmetric Boolean functions with optimum algebraic immunity. It is checked that, at least for some small variables, such functions have very good behavior against fast algebraic attacks. Compared with some known rotation symmetric Boolean functions with optimum algebraic immunity, the new construction has really better nonlinearity. Further, the algebraic degree of the constructed functions is also high enough.},
keywords={},
doi={10.1587/transfun.E102.A.818},
ISSN={1745-1337},
month={June},}
Copier
TY - JOUR
TI - Balanced Odd-Variable RSBFs with Optimum AI, High Nonlinearity and Good Behavior against FAAs
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 818
EP - 824
AU - Yindong CHEN
AU - Fei GUO
AU - Hongyan XIANG
AU - Weihong CAI
AU - Xianmang HE
PY - 2019
DO - 10.1587/transfun.E102.A.818
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E102-A
IS - 6
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - June 2019
AB - Rotation symmetric Boolean functions which are invariant under the action of cyclic group have been used in many different cryptosystems. This paper presents a new construction of balanced odd-variable rotation symmetric Boolean functions with optimum algebraic immunity. It is checked that, at least for some small variables, such functions have very good behavior against fast algebraic attacks. Compared with some known rotation symmetric Boolean functions with optimum algebraic immunity, the new construction has really better nonlinearity. Further, the algebraic degree of the constructed functions is also high enough.
ER -