The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Cet article présente une analyse de générateurs de nombres aléatoires basés sur des oscillateurs chaotiques en temps continu. Deux méthodes différentes de génération de nombres aléatoires ont été étudiées : 1) échantillonnage régulier d'une forme d'onde chaotique et 2) échantillonnage chaotique d'une forme d'onde régulière. L'estimation de la densité du noyau est utilisée pour décrire analytiquement la distribution des variables d'état chaotiques et la fonction de densité de probabilité correspondant au flux binaire de sortie. Des séquences de bits aléatoires sont générées à l'aide d'équations analytiques et de résultats de simulations numériques. En appliquant les concepts d'autocorrélation et d'entropie approximative, la qualité aléatoire des séquences de bits générées est évaluée pour analyser les relations entre les fréquences des formes d'onde régulières et chaotiques utilisées dans les deux méthodes de génération de nombres aléatoires. Il est démontré que dans les deux méthodes, il existe certains rapports entre les fréquences du signal régulier et chaotique auxquels le caractère aléatoire du flux binaire de sortie change brusquement. De plus, les deux méthodes de génération de nombres aléatoires ont été comparées à leur immunité aux interférences provenant de signaux externes. L'analyse montre que l'échantillonnage chaotique de la méthode de forme d'onde régulière offre une plus grande robustesse contre les interférences par rapport à l'échantillonnage régulier de la méthode de forme d'onde chaotique.
Kaya DEMiR
TÜB
Salih ERGÜN
TÜB
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Kaya DEMiR, Salih ERGÜN, "Analysis of Regular Sampling of Chaotic Waveform and Chaotic Sampling of Regular Waveform for Random Number Generation" in IEICE TRANSACTIONS on Fundamentals,
vol. E102-A, no. 6, pp. 767-774, June 2019, doi: 10.1587/transfun.E102.A.767.
Abstract: This paper presents an analysis of random number generators based on continuous-time chaotic oscillators. Two different methods for random number generation have been studied: 1) Regular sampling of a chaotic waveform, and 2) Chaotic sampling of a regular waveform. Kernel density estimation is used to analytically describe the distribution of chaotic state variables and the probability density function corresponding to the output bit stream. Random bit sequences are generated using analytical equations and results from numerical simulations. Applying the concepts of autocorrelation and approximate entropy, randomness quality of the generated bit sequences are assessed to analyze relationships between the frequencies of the regular and chaotic waveforms used in both random number generation methods. It is demonstrated that in both methods, there exists certain ratios between the frequencies of regular and chaotic signal at which the randomness of the output bit stream changes abruptly. Furthermore, both random number generation methods have been compared against their immunity to interference from external signals. Analysis shows that chaotic sampling of regular waveform method provides more robustness against interference compared to regular sampling of chaotic waveform method.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/transfun.E102.A.767/_p
Copier
@ARTICLE{e102-a_6_767,
author={Kaya DEMiR, Salih ERGÜN, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Analysis of Regular Sampling of Chaotic Waveform and Chaotic Sampling of Regular Waveform for Random Number Generation},
year={2019},
volume={E102-A},
number={6},
pages={767-774},
abstract={This paper presents an analysis of random number generators based on continuous-time chaotic oscillators. Two different methods for random number generation have been studied: 1) Regular sampling of a chaotic waveform, and 2) Chaotic sampling of a regular waveform. Kernel density estimation is used to analytically describe the distribution of chaotic state variables and the probability density function corresponding to the output bit stream. Random bit sequences are generated using analytical equations and results from numerical simulations. Applying the concepts of autocorrelation and approximate entropy, randomness quality of the generated bit sequences are assessed to analyze relationships between the frequencies of the regular and chaotic waveforms used in both random number generation methods. It is demonstrated that in both methods, there exists certain ratios between the frequencies of regular and chaotic signal at which the randomness of the output bit stream changes abruptly. Furthermore, both random number generation methods have been compared against their immunity to interference from external signals. Analysis shows that chaotic sampling of regular waveform method provides more robustness against interference compared to regular sampling of chaotic waveform method.},
keywords={},
doi={10.1587/transfun.E102.A.767},
ISSN={1745-1337},
month={June},}
Copier
TY - JOUR
TI - Analysis of Regular Sampling of Chaotic Waveform and Chaotic Sampling of Regular Waveform for Random Number Generation
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 767
EP - 774
AU - Kaya DEMiR
AU - Salih ERGÜN
PY - 2019
DO - 10.1587/transfun.E102.A.767
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E102-A
IS - 6
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - June 2019
AB - This paper presents an analysis of random number generators based on continuous-time chaotic oscillators. Two different methods for random number generation have been studied: 1) Regular sampling of a chaotic waveform, and 2) Chaotic sampling of a regular waveform. Kernel density estimation is used to analytically describe the distribution of chaotic state variables and the probability density function corresponding to the output bit stream. Random bit sequences are generated using analytical equations and results from numerical simulations. Applying the concepts of autocorrelation and approximate entropy, randomness quality of the generated bit sequences are assessed to analyze relationships between the frequencies of the regular and chaotic waveforms used in both random number generation methods. It is demonstrated that in both methods, there exists certain ratios between the frequencies of regular and chaotic signal at which the randomness of the output bit stream changes abruptly. Furthermore, both random number generation methods have been compared against their immunity to interference from external signals. Analysis shows that chaotic sampling of regular waveform method provides more robustness against interference compared to regular sampling of chaotic waveform method.
ER -