The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Vues en texte intégral
122
Il est bien connu que la synchronisation du chaos dans les systèmes chaotiques couplés résulte de conditions de couplage spécifique, telles qu'une synchronisation complète, en phase et généralisée. Récemment, plusieurs méthodes permettant de contrôler cette synchronisation du chaos à l'aide d'un contrôleur à rétroaction non linéaire ont été proposées. Dans cette étude, nous avons appliqué une méthode de réduction de la plage de rétroaction d'orbite proposée à des cartes cubiques couplées afin de contrôler la synchronisation de l'intermittence chaos-chaos. En évaluant le comportement du système et sa dépendance à l'égard de la rétroaction et de la force de couplage, nous avons confirmé que la synchronisation de l'intermittence chaos-chaos pouvait être induite à l'aide de ce contrôleur à rétroaction non linéaire, malgré le fait que l'état asynchrone au sein d'un attracteur unilatéral soit maintenu. En particulier, le degré de synchronisation est élevé à la limite entre la région de paramètres d'intermittence chaos-chaos pour la force de rétroaction et la région d'intermittence sans chaos-chaos. Ces caractéristiques sont largement conservées sur les cartes cubiques couplées à grande échelle.
Sou NOBUKAWA
Chiba Institute of Technology
Haruhiko NISHIMURA
University of Hyogo
Teruya YAMANISHI
Fukui University of Technology
Hirotaka DOHO
University of Hyogo,Kochi University
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Sou NOBUKAWA, Haruhiko NISHIMURA, Teruya YAMANISHI, Hirotaka DOHO, "Induced Synchronization of Chaos-Chaos Intermittency Maintaining Asynchronous State of Chaotic Orbits by External Feedback Signals" in IEICE TRANSACTIONS on Fundamentals,
vol. E102-A, no. 3, pp. 524-531, March 2019, doi: 10.1587/transfun.E102.A.524.
Abstract: It is well-known that chaos synchronization in coupled chaotic systems arises from conditions with specific coupling, such as complete, phase, and generalized synchronization. Recently, several methods for controlling this chaos synchronization using a nonlinear feedback controller have been proposed. In this study, we applied a proposed reducing range of orbit feedback method to coupled cubic maps in order to control synchronization of chaos-chaos intermittency. By evaluating the system's behavior and its dependence on the feedback and coupling strength, we confirmed that synchronization of chaos-chaos intermittency could be induced using this nonlinear feedback controller, despite the fact that the asynchronous state within a unilateral attractor is maintained. In particular, the degree of synchronization is high at the edge between the chaos-chaos intermittency parameter region for feedback strength and the non-chaos-chaos intermittency region. These characteristics are largely maintained on large-scale coupled cubic maps.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/transfun.E102.A.524/_p
Copier
@ARTICLE{e102-a_3_524,
author={Sou NOBUKAWA, Haruhiko NISHIMURA, Teruya YAMANISHI, Hirotaka DOHO, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Induced Synchronization of Chaos-Chaos Intermittency Maintaining Asynchronous State of Chaotic Orbits by External Feedback Signals},
year={2019},
volume={E102-A},
number={3},
pages={524-531},
abstract={It is well-known that chaos synchronization in coupled chaotic systems arises from conditions with specific coupling, such as complete, phase, and generalized synchronization. Recently, several methods for controlling this chaos synchronization using a nonlinear feedback controller have been proposed. In this study, we applied a proposed reducing range of orbit feedback method to coupled cubic maps in order to control synchronization of chaos-chaos intermittency. By evaluating the system's behavior and its dependence on the feedback and coupling strength, we confirmed that synchronization of chaos-chaos intermittency could be induced using this nonlinear feedback controller, despite the fact that the asynchronous state within a unilateral attractor is maintained. In particular, the degree of synchronization is high at the edge between the chaos-chaos intermittency parameter region for feedback strength and the non-chaos-chaos intermittency region. These characteristics are largely maintained on large-scale coupled cubic maps.},
keywords={},
doi={10.1587/transfun.E102.A.524},
ISSN={1745-1337},
month={March},}
Copier
TY - JOUR
TI - Induced Synchronization of Chaos-Chaos Intermittency Maintaining Asynchronous State of Chaotic Orbits by External Feedback Signals
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 524
EP - 531
AU - Sou NOBUKAWA
AU - Haruhiko NISHIMURA
AU - Teruya YAMANISHI
AU - Hirotaka DOHO
PY - 2019
DO - 10.1587/transfun.E102.A.524
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E102-A
IS - 3
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - March 2019
AB - It is well-known that chaos synchronization in coupled chaotic systems arises from conditions with specific coupling, such as complete, phase, and generalized synchronization. Recently, several methods for controlling this chaos synchronization using a nonlinear feedback controller have been proposed. In this study, we applied a proposed reducing range of orbit feedback method to coupled cubic maps in order to control synchronization of chaos-chaos intermittency. By evaluating the system's behavior and its dependence on the feedback and coupling strength, we confirmed that synchronization of chaos-chaos intermittency could be induced using this nonlinear feedback controller, despite the fact that the asynchronous state within a unilateral attractor is maintained. In particular, the degree of synchronization is high at the edge between the chaos-chaos intermittency parameter region for feedback strength and the non-chaos-chaos intermittency region. These characteristics are largely maintained on large-scale coupled cubic maps.
ER -