The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Vues en texte intégral
88
La construction du code localement réparable (LRC) basé sur la gabiduline par Silberstein et al. est un exemple important de distance optimale (r,δ)-LRC. Il a en outre été démontré que son optimalité en matière de distance couvre le cas de plusieurs (r,δ)-localité, où le (r,δ)-les contraintes de localité sont différentes selon les différents symboles. Cependant, l'optimalité n'est valable que sous l'ordre (r,δ) condition, où les paramètres du multiple (r,δ)-localité satisfont à une condition de commande spécifique. Dans cette lettre, nous montrons que les LRC à base de gabiduline sont toujours optimales en termes de distance, même sans l'ordre (r,δ) état.
Geonu KIM
Seoul National University
Jungwoo LEE
Seoul National University
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Geonu KIM, Jungwoo LEE, "On the Optimality of Gabidulin-Based LRCs as Codes with Multiple Local Erasure Correction" in IEICE TRANSACTIONS on Fundamentals,
vol. E102-A, no. 9, pp. 1326-1329, September 2019, doi: 10.1587/transfun.E102.A.1326.
Abstract: The Gabidulin-based locally repairable code (LRC) construction by Silberstein et al. is an important example of distance optimal (r,δ)-LRCs. Its distance optimality has been further shown to cover the case of multiple (r,δ)-locality, where the (r,δ)-locality constraints are different among different symbols. However, the optimality only holds under the ordered (r,δ) condition, where the parameters of the multiple (r,δ)-locality satisfy a specific ordering condition. In this letter, we show that Gabidulin-based LRCs are still distance optimal even without the ordered (r,δ) condition.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/transfun.E102.A.1326/_p
Copier
@ARTICLE{e102-a_9_1326,
author={Geonu KIM, Jungwoo LEE, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={On the Optimality of Gabidulin-Based LRCs as Codes with Multiple Local Erasure Correction},
year={2019},
volume={E102-A},
number={9},
pages={1326-1329},
abstract={The Gabidulin-based locally repairable code (LRC) construction by Silberstein et al. is an important example of distance optimal (r,δ)-LRCs. Its distance optimality has been further shown to cover the case of multiple (r,δ)-locality, where the (r,δ)-locality constraints are different among different symbols. However, the optimality only holds under the ordered (r,δ) condition, where the parameters of the multiple (r,δ)-locality satisfy a specific ordering condition. In this letter, we show that Gabidulin-based LRCs are still distance optimal even without the ordered (r,δ) condition.},
keywords={},
doi={10.1587/transfun.E102.A.1326},
ISSN={1745-1337},
month={September},}
Copier
TY - JOUR
TI - On the Optimality of Gabidulin-Based LRCs as Codes with Multiple Local Erasure Correction
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 1326
EP - 1329
AU - Geonu KIM
AU - Jungwoo LEE
PY - 2019
DO - 10.1587/transfun.E102.A.1326
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E102-A
IS - 9
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - September 2019
AB - The Gabidulin-based locally repairable code (LRC) construction by Silberstein et al. is an important example of distance optimal (r,δ)-LRCs. Its distance optimality has been further shown to cover the case of multiple (r,δ)-locality, where the (r,δ)-locality constraints are different among different symbols. However, the optimality only holds under the ordered (r,δ) condition, where the parameters of the multiple (r,δ)-locality satisfy a specific ordering condition. In this letter, we show that Gabidulin-based LRCs are still distance optimal even without the ordered (r,δ) condition.
ER -