The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Un système passivement mobile est une notion abstraite de réseaux mobiles ad hoc. Il s'agit d'un ensemble d'agents dotés d'appareils informatiques. Les agents se déplacent dans une région, mais l'algorithme ne peut pas contrôler leur comportement physique (c'est-à-dire la façon dont ils se déplacent). Le modèle de protocole de population est l'un des modèles prometteurs dans lequel le calcul se fait par communication par paires entre deux agents. Les agents communicants mettent à jour leurs états par une fonction de transition spécifiée (algorithme). Dans cet article, nous considérons une forme générale de agrégation problème avec une station de base. La station de base est un agent spécial doté d’une puissance de calcul plus puissante que les autres. Dans le problème d'agrégation, la station de base doit résumer les entrées distribuées aux autres agents. Nous proposons un algorithme qui résout le problème d'agrégation en temps parallèle sous-linéaire en utilisant un nombre relativement faible d'états par agent. Plus précisément, notre algorithme résout le problème d'agrégation avec le domaine d'entrée X in O(√n enregistrer2 n) temps parallèle et O(|X|2) états par agent (sauf pour la station de base) avec une forte probabilité.
Ryota EGUCHI
Nagoya Institute of Technology
Taisuke IZUMI
Nagoya Institute of Technology
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Ryota EGUCHI, Taisuke IZUMI, "Sub-Linear Time Aggregation in Probabilistic Population Protocol Model" in IEICE TRANSACTIONS on Fundamentals,
vol. E102-A, no. 9, pp. 1187-1194, September 2019, doi: 10.1587/transfun.E102.A.1187.
Abstract: A passively mobile system is an abstract notion of mobile ad-hoc networks. It is a collection of agents with computing devices. Agents move in a region, but the algorithm cannot control their physical behavior (i.e., how they move). The population protocol model is one of the promising models in which the computation proceeds by the pairwise communication between two agents. The communicating agents update their states by a specified transition function (algorithm). In this paper, we consider a general form of the aggregation problem with a base station. The base station is a special agent having the computational power more powerful than others. In the aggregation problem, the base station has to sum up for inputs distributed to other agents. We propose an algorithm that solves the aggregation problem in sub-linear parallel time using a relatively small number of states per agent. More precisely, our algorithm solves the aggregation problem with input domain X in O(√n log2 n) parallel time and O(|X|2) states per agent (except for the base station) with high probability.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/transfun.E102.A.1187/_p
Copier
@ARTICLE{e102-a_9_1187,
author={Ryota EGUCHI, Taisuke IZUMI, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Sub-Linear Time Aggregation in Probabilistic Population Protocol Model},
year={2019},
volume={E102-A},
number={9},
pages={1187-1194},
abstract={A passively mobile system is an abstract notion of mobile ad-hoc networks. It is a collection of agents with computing devices. Agents move in a region, but the algorithm cannot control their physical behavior (i.e., how they move). The population protocol model is one of the promising models in which the computation proceeds by the pairwise communication between two agents. The communicating agents update their states by a specified transition function (algorithm). In this paper, we consider a general form of the aggregation problem with a base station. The base station is a special agent having the computational power more powerful than others. In the aggregation problem, the base station has to sum up for inputs distributed to other agents. We propose an algorithm that solves the aggregation problem in sub-linear parallel time using a relatively small number of states per agent. More precisely, our algorithm solves the aggregation problem with input domain X in O(√n log2 n) parallel time and O(|X|2) states per agent (except for the base station) with high probability.},
keywords={},
doi={10.1587/transfun.E102.A.1187},
ISSN={1745-1337},
month={September},}
Copier
TY - JOUR
TI - Sub-Linear Time Aggregation in Probabilistic Population Protocol Model
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 1187
EP - 1194
AU - Ryota EGUCHI
AU - Taisuke IZUMI
PY - 2019
DO - 10.1587/transfun.E102.A.1187
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E102-A
IS - 9
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - September 2019
AB - A passively mobile system is an abstract notion of mobile ad-hoc networks. It is a collection of agents with computing devices. Agents move in a region, but the algorithm cannot control their physical behavior (i.e., how they move). The population protocol model is one of the promising models in which the computation proceeds by the pairwise communication between two agents. The communicating agents update their states by a specified transition function (algorithm). In this paper, we consider a general form of the aggregation problem with a base station. The base station is a special agent having the computational power more powerful than others. In the aggregation problem, the base station has to sum up for inputs distributed to other agents. We propose an algorithm that solves the aggregation problem in sub-linear parallel time using a relatively small number of states per agent. More precisely, our algorithm solves the aggregation problem with input domain X in O(√n log2 n) parallel time and O(|X|2) states per agent (except for the base station) with high probability.
ER -