The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Dans cet article, nous étudions les codes cycliques auto-duaux de longueur n sur l'anneau R=Z4[u]/u2-1>, où n est un entier positif impair. Nous définissons une nouvelle carte de Gray φ à partir de R à Z42. C'est une carte bijective et maintient l'auto-dualité. De plus, nous donnons les structures des générateurs de codes cycliques et de codes cycliques auto-duaux de longueur impaire n sur l'anneau R. En guise d'application, certains codes auto-duaux de longueur 2n plus de Z4 on obtient.
Yun GAO
Nankai University
Jian GAO
Shandong University of Technology
Fang-Wei FU
Nankai University
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Yun GAO , Jian GAO, Fang-Wei FU, "Self-Dual Cyclic Codes over Z4[u]/
Abstract: In this paper, we study self-dual cyclic codes of length n over the ring R=Z4[u]/<u2-1>, where n is an odd positive integer. We define a new Gray map φ from R to Z42. It is a bijective map and maintains the self-duality. Furthermore, we give the structures of the generators of cyclic codes and self-dual cyclic codes of odd length n over the ring R. As an application, some self-dual codes of length 2n over Z4 are obtained.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/transfun.E101.A.1724/_p
Copier
@ARTICLE{e101-a_10_1724,
author={Yun GAO , Jian GAO, Fang-Wei FU, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Self-Dual Cyclic Codes over Z4[u]/
year={2018},
volume={E101-A},
number={10},
pages={1724-1729},
abstract={In this paper, we study self-dual cyclic codes of length n over the ring R=Z4[u]/<u2-1>, where n is an odd positive integer. We define a new Gray map φ from R to Z42. It is a bijective map and maintains the self-duality. Furthermore, we give the structures of the generators of cyclic codes and self-dual cyclic codes of odd length n over the ring R. As an application, some self-dual codes of length 2n over Z4 are obtained.},
keywords={},
doi={10.1587/transfun.E101.A.1724},
ISSN={1745-1337},
month={October},}
Copier
TY - JOUR
TI - Self-Dual Cyclic Codes over Z4[u]/
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 1724
EP - 1729
AU - Yun GAO
AU - Jian GAO
AU - Fang-Wei FU
PY - 2018
DO - 10.1587/transfun.E101.A.1724
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E101-A
IS - 10
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - October 2018
AB - In this paper, we study self-dual cyclic codes of length n over the ring R=Z4[u]/<u2-1>, where n is an odd positive integer. We define a new Gray map φ from R to Z42. It is a bijective map and maintains the self-duality. Furthermore, we give the structures of the generators of cyclic codes and self-dual cyclic codes of odd length n over the ring R. As an application, some self-dual codes of length 2n over Z4 are obtained.
ER -