The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Un problème important en mathématiques et en science des données, étant donné deux espaces métriques ou plus, consiste à obtenir une métrique de l'espace produit en agrégeant les métriques sources à l'aide d'une fonction multivariée. En 1981, Borsík et Doboš ont résolu le problème et de nombreux progrès ont ensuite été réalisés dans la généralisation du problème. L'inégalité triangulaire est une propriété clé pour qu'une fonction bivariée soit une métrique. Dans l'agrégation de métriques, demander l'inégalité triangulaire de la métrique résultante impose la sous-additivité à la fonction d'agrégation. Cependant, dans certaines applications, telles que l'appariement d'images, une notion assouplie de l'inégalité triangulaire est utile et cet assouplissement peut élargir la portée des agrégateurs pour inclure certaines fonctions superadditives naturelles telles que la moyenne harmonique. Cet article examine l'agrégation de deux semimétriques (c'est-à-dire des métriques avec une inégalité triangulaire relâchée) par la moyenne harmonique et montre qu'une telle agrégation préserve faiblement les inégalités triangulaires relâchées. En guise d'application, l'article présente une preuve alternative simple de l'inégalité triangulaire assouplie satisfaite par la dissimilarité robuste de l'ensemble Jaccard-Tanimoto, qui a été initialement montrée par Gragera et Suppakitpaisarn en 2016.
Toshiya ITOH
Tokyo Institute of Technology
Yoshinori TAKEI
Akita College
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Toshiya ITOH, Yoshinori TAKEI, "On Aggregating Two Metrics with Relaxed Triangle Inequalities by the Weighted Harmonic Mean" in IEICE TRANSACTIONS on Fundamentals,
vol. E101-A, no. 9, pp. 1404-1411, September 2018, doi: 10.1587/transfun.E101.A.1404.
Abstract: An important problem in mathematics and data science, given two or more metric spaces, is obtaining a metric of the product space by aggregating the source metrics using a multivariate function. In 1981, Borsík and Doboš solved the problem, and much progress has subsequently been made in generalizations of the problem. The triangle inequality is a key property for a bivariate function to be a metric. In the metric aggregation, requesting the triangle inequality of the resulting metric imposes the subadditivity on the aggregating function. However, in some applications, such as the image matching, a relaxed notion of the triangle inequality is useful and this relaxation may enlarge the scope of the aggregators to include some natural superadditive functions such as the harmonic mean. This paper examines the aggregation of two semimetrics (i.e. metrics with a relaxed triangle inequality) by the harmonic mean is studied and shows that such aggregation weakly preserves the relaxed triangle inequalities. As an application, the paper presents an alternative simple proof of the relaxed triangle inequality satisfied by the robust Jaccard-Tanimoto set dissimilarity, which was originally shown by Gragera and Suppakitpaisarn in 2016.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/transfun.E101.A.1404/_p
Copier
@ARTICLE{e101-a_9_1404,
author={Toshiya ITOH, Yoshinori TAKEI, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={On Aggregating Two Metrics with Relaxed Triangle Inequalities by the Weighted Harmonic Mean},
year={2018},
volume={E101-A},
number={9},
pages={1404-1411},
abstract={An important problem in mathematics and data science, given two or more metric spaces, is obtaining a metric of the product space by aggregating the source metrics using a multivariate function. In 1981, Borsík and Doboš solved the problem, and much progress has subsequently been made in generalizations of the problem. The triangle inequality is a key property for a bivariate function to be a metric. In the metric aggregation, requesting the triangle inequality of the resulting metric imposes the subadditivity on the aggregating function. However, in some applications, such as the image matching, a relaxed notion of the triangle inequality is useful and this relaxation may enlarge the scope of the aggregators to include some natural superadditive functions such as the harmonic mean. This paper examines the aggregation of two semimetrics (i.e. metrics with a relaxed triangle inequality) by the harmonic mean is studied and shows that such aggregation weakly preserves the relaxed triangle inequalities. As an application, the paper presents an alternative simple proof of the relaxed triangle inequality satisfied by the robust Jaccard-Tanimoto set dissimilarity, which was originally shown by Gragera and Suppakitpaisarn in 2016.},
keywords={},
doi={10.1587/transfun.E101.A.1404},
ISSN={1745-1337},
month={September},}
Copier
TY - JOUR
TI - On Aggregating Two Metrics with Relaxed Triangle Inequalities by the Weighted Harmonic Mean
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 1404
EP - 1411
AU - Toshiya ITOH
AU - Yoshinori TAKEI
PY - 2018
DO - 10.1587/transfun.E101.A.1404
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E101-A
IS - 9
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - September 2018
AB - An important problem in mathematics and data science, given two or more metric spaces, is obtaining a metric of the product space by aggregating the source metrics using a multivariate function. In 1981, Borsík and Doboš solved the problem, and much progress has subsequently been made in generalizations of the problem. The triangle inequality is a key property for a bivariate function to be a metric. In the metric aggregation, requesting the triangle inequality of the resulting metric imposes the subadditivity on the aggregating function. However, in some applications, such as the image matching, a relaxed notion of the triangle inequality is useful and this relaxation may enlarge the scope of the aggregators to include some natural superadditive functions such as the harmonic mean. This paper examines the aggregation of two semimetrics (i.e. metrics with a relaxed triangle inequality) by the harmonic mean is studied and shows that such aggregation weakly preserves the relaxed triangle inequalities. As an application, the paper presents an alternative simple proof of the relaxed triangle inequality satisfied by the robust Jaccard-Tanimoto set dissimilarity, which was originally shown by Gragera and Suppakitpaisarn in 2016.
ER -