The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
La classe de k-codes décodables à retard binaire, codes sources permettant un retard de décodage d'au plus k bits pour k≥0, peut atteindre une longueur moyenne de mot de code plus courte que les codes de Huffman. Cet article discute des propriétés générales de la classe de k-codes décodables à retard de bits avec un nombre fini de tables de codes et prouve deux théorèmes qui nous permettent de limiter la portée des codes à considérer lors de la discussion des codes optimaux. k-codes décodables à retard de bits.
Kengo HASHIMOTO
University of Fukui
Ken-ichi IWATA
University of Fukui
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Kengo HASHIMOTO, Ken-ichi IWATA, "Properties of k-Bit Delay Decodable Codes" in IEICE TRANSACTIONS on Fundamentals,
vol. E107-A, no. 3, pp. 417-447, March 2024, doi: 10.1587/transfun.2023TAP0016.
Abstract: The class of k-bit delay decodable codes, source codes allowing decoding delay of at most k bits for k≥0, can attain a shorter average codeword length than Huffman codes. This paper discusses the general properties of the class of k-bit delay decodable codes with a finite number of code tables and proves two theorems which enable us to limit the scope of codes to be considered when discussing optimal k-bit delay decodable codes.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/transfun.2023TAP0016/_p
Copier
@ARTICLE{e107-a_3_417,
author={Kengo HASHIMOTO, Ken-ichi IWATA, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Properties of k-Bit Delay Decodable Codes},
year={2024},
volume={E107-A},
number={3},
pages={417-447},
abstract={The class of k-bit delay decodable codes, source codes allowing decoding delay of at most k bits for k≥0, can attain a shorter average codeword length than Huffman codes. This paper discusses the general properties of the class of k-bit delay decodable codes with a finite number of code tables and proves two theorems which enable us to limit the scope of codes to be considered when discussing optimal k-bit delay decodable codes.},
keywords={},
doi={10.1587/transfun.2023TAP0016},
ISSN={1745-1337},
month={March},}
Copier
TY - JOUR
TI - Properties of k-Bit Delay Decodable Codes
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 417
EP - 447
AU - Kengo HASHIMOTO
AU - Ken-ichi IWATA
PY - 2024
DO - 10.1587/transfun.2023TAP0016
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E107-A
IS - 3
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - March 2024
AB - The class of k-bit delay decodable codes, source codes allowing decoding delay of at most k bits for k≥0, can attain a shorter average codeword length than Huffman codes. This paper discusses the general properties of the class of k-bit delay decodable codes with a finite number of code tables and proves two theorems which enable us to limit the scope of codes to be considered when discussing optimal k-bit delay decodable codes.
ER -