The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Un problème de codage de canal avec contrainte de coût pour les canaux généraux est considéré. Verdú et Han ont dérivé la capacité ϵ pour les canaux généraux. En suivant les mêmes lignes de preuve, nous pouvons également dériver la ϵ-capacité avec contrainte de coût. Dans cet article, nous dérivons une formule pour la capacité ϵ avec une contrainte de coût permettant un dépassement. Afin de prouver ce théorème, une nouvelle variante du lemme de Feinstein est appliquée pour sélectionner les mots de code satisfaisant la contrainte de coût et les mots de code ne satisfaisant pas la contrainte de coût.
Masaki HORI
Shinshu University
Mikihiko NISHIARA
Shinshu University
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Masaki HORI, Mikihiko NISHIARA, "Channel Capacity with Cost Constraint Allowing Cost Overrun" in IEICE TRANSACTIONS on Fundamentals,
vol. E107-A, no. 3, pp. 458-463, March 2024, doi: 10.1587/transfun.2023TAP0010.
Abstract: A channel coding problem with cost constraint for general channels is considered. Verdú and Han derived ϵ-capacity for general channels. Following the same lines of its proof, we can also derive ϵ-capacity with cost constraint. In this paper, we derive a formula for ϵ-capacity with cost constraint allowing overrun. In order to prove this theorem, a new variation of Feinstein's lemma is applied to select codewords satisfying cost constraint and codewords not satisfying cost constraint.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/transfun.2023TAP0010/_p
Copier
@ARTICLE{e107-a_3_458,
author={Masaki HORI, Mikihiko NISHIARA, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Channel Capacity with Cost Constraint Allowing Cost Overrun},
year={2024},
volume={E107-A},
number={3},
pages={458-463},
abstract={A channel coding problem with cost constraint for general channels is considered. Verdú and Han derived ϵ-capacity for general channels. Following the same lines of its proof, we can also derive ϵ-capacity with cost constraint. In this paper, we derive a formula for ϵ-capacity with cost constraint allowing overrun. In order to prove this theorem, a new variation of Feinstein's lemma is applied to select codewords satisfying cost constraint and codewords not satisfying cost constraint.},
keywords={},
doi={10.1587/transfun.2023TAP0010},
ISSN={1745-1337},
month={March},}
Copier
TY - JOUR
TI - Channel Capacity with Cost Constraint Allowing Cost Overrun
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 458
EP - 463
AU - Masaki HORI
AU - Mikihiko NISHIARA
PY - 2024
DO - 10.1587/transfun.2023TAP0010
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E107-A
IS - 3
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - March 2024
AB - A channel coding problem with cost constraint for general channels is considered. Verdú and Han derived ϵ-capacity for general channels. Following the same lines of its proof, we can also derive ϵ-capacity with cost constraint. In this paper, we derive a formula for ϵ-capacity with cost constraint allowing overrun. In order to prove this theorem, a new variation of Feinstein's lemma is applied to select codewords satisfying cost constraint and codewords not satisfying cost constraint.
ER -