The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Cet article propose l'algorithme de Jacobi de sur-relaxation périodique successive (PSOR) pour la détection de l'erreur quadratique moyenne minimale (MMSE) des signaux à entrées multiples et sorties multiples (MIMO). L'algorithme proposé présente les avantages de deux méthodes conventionnelles. L’une est la méthode Jacobi, qui est une méthode itérative de résolution d’équations linéaires et adaptée à une mise en œuvre parallèle. La méthode Jacobi est donc un candidat prometteur pour la résolution simultanée d’équations linéaires à grande vitesse pour le détecteur MMSE. L’autre est la méthode Chebyshev PSOR, dont il a récemment été démontré qu’elle accélère la vitesse de convergence des itérations linéaires à virgule fixe. Nous comparons les performances de convergence de l'algorithme PSOR-Jacobi avec celles des algorithmes conventionnels via simulation informatique. Les résultats montrent que l'algorithme PSOR-Jacobi permet une convergence plus rapide sans augmenter la complexité de calcul, ainsi que des performances de détection plus élevées pour un nombre fixe d'itérations. Cet article propose également une méthode efficace de calcul de matrices inverses utilisant l'algorithme PSOR-Jacobi. Les résultats de la simulation informatique montrent que l'algorithme PSOR-Jacobi accélère également le calcul de la matrice inverse.
Asahi MIZUKOSHI
Nagoya Institute of Technology
Ayano NAKAI-KASAI
Nagoya Institute of Technology
Tadashi WADAYAMA
Nagoya Institute of Technology
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Asahi MIZUKOSHI, Ayano NAKAI-KASAI, Tadashi WADAYAMA, "PSOR-Jacobi Algorithm for Accelerated MMSE MIMO Detection" in IEICE TRANSACTIONS on Fundamentals,
vol. E107-A, no. 3, pp. 486-492, March 2024, doi: 10.1587/transfun.2023TAP0004.
Abstract: This paper proposes the periodical successive over-relaxation (PSOR)-Jacobi algorithm for minimum mean squared error (MMSE) detection of multiple-input multiple-output (MIMO) signals. The proposed algorithm has the advantages of two conventional methods. One is the Jacobi method, which is an iterative method for solving linear equations and is suitable for parallel implementation. The Jacobi method is thus a promising candidate for high-speed simultaneous linear equation solvers for the MMSE detector. The other is the Chebyshev PSOR method, which has recently been shown to accelerate the convergence speed of linear fixed-point iterations. We compare the convergence performance of the PSOR-Jacobi algorithm with that of conventional algorithms via computer simulation. The results show that the PSOR-Jacobi algorithm achieves faster convergence without increasing computational complexity, and higher detection performance for a fixed number of iterations. This paper also proposes an efficient computation method of inverse matrices using the PSOR-Jacobi algorithm. The results of computer simulation show that the PSOR-Jacobi algorithm also accelerates the computation of inverse matrix.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/transfun.2023TAP0004/_p
Copier
@ARTICLE{e107-a_3_486,
author={Asahi MIZUKOSHI, Ayano NAKAI-KASAI, Tadashi WADAYAMA, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={PSOR-Jacobi Algorithm for Accelerated MMSE MIMO Detection},
year={2024},
volume={E107-A},
number={3},
pages={486-492},
abstract={This paper proposes the periodical successive over-relaxation (PSOR)-Jacobi algorithm for minimum mean squared error (MMSE) detection of multiple-input multiple-output (MIMO) signals. The proposed algorithm has the advantages of two conventional methods. One is the Jacobi method, which is an iterative method for solving linear equations and is suitable for parallel implementation. The Jacobi method is thus a promising candidate for high-speed simultaneous linear equation solvers for the MMSE detector. The other is the Chebyshev PSOR method, which has recently been shown to accelerate the convergence speed of linear fixed-point iterations. We compare the convergence performance of the PSOR-Jacobi algorithm with that of conventional algorithms via computer simulation. The results show that the PSOR-Jacobi algorithm achieves faster convergence without increasing computational complexity, and higher detection performance for a fixed number of iterations. This paper also proposes an efficient computation method of inverse matrices using the PSOR-Jacobi algorithm. The results of computer simulation show that the PSOR-Jacobi algorithm also accelerates the computation of inverse matrix.},
keywords={},
doi={10.1587/transfun.2023TAP0004},
ISSN={1745-1337},
month={March},}
Copier
TY - JOUR
TI - PSOR-Jacobi Algorithm for Accelerated MMSE MIMO Detection
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 486
EP - 492
AU - Asahi MIZUKOSHI
AU - Ayano NAKAI-KASAI
AU - Tadashi WADAYAMA
PY - 2024
DO - 10.1587/transfun.2023TAP0004
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E107-A
IS - 3
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - March 2024
AB - This paper proposes the periodical successive over-relaxation (PSOR)-Jacobi algorithm for minimum mean squared error (MMSE) detection of multiple-input multiple-output (MIMO) signals. The proposed algorithm has the advantages of two conventional methods. One is the Jacobi method, which is an iterative method for solving linear equations and is suitable for parallel implementation. The Jacobi method is thus a promising candidate for high-speed simultaneous linear equation solvers for the MMSE detector. The other is the Chebyshev PSOR method, which has recently been shown to accelerate the convergence speed of linear fixed-point iterations. We compare the convergence performance of the PSOR-Jacobi algorithm with that of conventional algorithms via computer simulation. The results show that the PSOR-Jacobi algorithm achieves faster convergence without increasing computational complexity, and higher detection performance for a fixed number of iterations. This paper also proposes an efficient computation method of inverse matrices using the PSOR-Jacobi algorithm. The results of computer simulation show that the PSOR-Jacobi algorithm also accelerates the computation of inverse matrix.
ER -