The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Cet article développe une méthode de conception et une analyse théorique pour des oscillateurs non linéaires par morceaux qui ont des cycles limites circulaires souhaités. En particulier, la preuve mathématique de l'existence, de l'unicité et de la stabilité du cycle limite est présentée pour l'oscillateur non linéaire par morceaux. De plus, la relation entre les paramètres de l'oscillateur et les directions et périodes de rotation des trajectoires de cycle limite est étudiée. Ensuite, certaines simulations numériques montrent que l'oscillateur non linéaire par morceaux a un cycle limite unique et stable et que les propriétés sur les directions et les périodes de rotation sont valables.
Tatsuya KAI
Tokyo University of Science
Koshi MAEHARA
RICOH Company, Ltd.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Tatsuya KAI, Koshi MAEHARA, "Design and Analysis of Piecewise Nonlinear Oscillators with Circular-Type Limit Cycles" in IEICE TRANSACTIONS on Fundamentals,
vol. E106-A, no. 9, pp. 1234-1240, September 2023, doi: 10.1587/transfun.2022EAP1116.
Abstract: This paper develops a design method and theoretical analysis for piecewise nonlinear oscillators that have desired circular limit cycles. Especially, the mathematical proof on existence, uniqueness, and stability of the limit cycle is shown for the piecewise nonlinear oscillator. In addition, the relationship between parameters in the oscillator and rotational directions and periods of the limit cycle trajectories is investigated. Then, some numerical simulations show that the piecewise nonlinear oscillator has a unique and stable limit cycle and the properties on rotational directions and periods hold.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/transfun.2022EAP1116/_p
Copier
@ARTICLE{e106-a_9_1234,
author={Tatsuya KAI, Koshi MAEHARA, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Design and Analysis of Piecewise Nonlinear Oscillators with Circular-Type Limit Cycles},
year={2023},
volume={E106-A},
number={9},
pages={1234-1240},
abstract={This paper develops a design method and theoretical analysis for piecewise nonlinear oscillators that have desired circular limit cycles. Especially, the mathematical proof on existence, uniqueness, and stability of the limit cycle is shown for the piecewise nonlinear oscillator. In addition, the relationship between parameters in the oscillator and rotational directions and periods of the limit cycle trajectories is investigated. Then, some numerical simulations show that the piecewise nonlinear oscillator has a unique and stable limit cycle and the properties on rotational directions and periods hold.},
keywords={},
doi={10.1587/transfun.2022EAP1116},
ISSN={1745-1337},
month={September},}
Copier
TY - JOUR
TI - Design and Analysis of Piecewise Nonlinear Oscillators with Circular-Type Limit Cycles
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 1234
EP - 1240
AU - Tatsuya KAI
AU - Koshi MAEHARA
PY - 2023
DO - 10.1587/transfun.2022EAP1116
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E106-A
IS - 9
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - September 2023
AB - This paper develops a design method and theoretical analysis for piecewise nonlinear oscillators that have desired circular limit cycles. Especially, the mathematical proof on existence, uniqueness, and stability of the limit cycle is shown for the piecewise nonlinear oscillator. In addition, the relationship between parameters in the oscillator and rotational directions and periods of the limit cycle trajectories is investigated. Then, some numerical simulations show that the piecewise nonlinear oscillator has a unique and stable limit cycle and the properties on rotational directions and periods hold.
ER -