The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Dans l'estimation de l'état des réseaux électriques en régime permanent, une cyberattaque qui ne peut pas être détectée à partir du résidu (c'est-à-dire l'erreur d'estimation) est appelée attaque par fausse injection de données (FDI). Dans cette lettre, pour renforcer la sécurité des réseaux électriques, nous proposons une méthode de détection d'une attaque IDE. Dans la méthode proposée, une attaque FDI est détectée en choisissant aléatoirement les capteurs utilisés dans l’estimation de l’état. L'efficacité de la méthode proposée est présentée par deux exemples incluant le système IEEE 14-bus.
Sho OBATA
Hokkaido University
Koichi KOBAYASHI
Hokkaido University
Yuh YAMASHITA
Hokkaido University
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Sho OBATA, Koichi KOBAYASHI, Yuh YAMASHITA, "Sensor Scheduling-Based Detection of False Data Injection Attacks in Power System State Estimation" in IEICE TRANSACTIONS on Fundamentals,
vol. E105-A, no. 6, pp. 1015-1019, June 2022, doi: 10.1587/transfun.2021EAL2098.
Abstract: In the state estimation of steady-state power networks, a cyber attack that cannot be detected from the residual (i.e., the estimation error) is called a false data injection (FDI) attack. In this letter, to enforce the security of power networks, we propose a method of detecting an FDI attack. In the proposed method, an FDI attack is detected by randomly choosing sensors used in the state estimation. The effectiveness of the proposed method is presented by two examples including the IEEE 14-bus system.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/transfun.2021EAL2098/_p
Copier
@ARTICLE{e105-a_6_1015,
author={Sho OBATA, Koichi KOBAYASHI, Yuh YAMASHITA, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Sensor Scheduling-Based Detection of False Data Injection Attacks in Power System State Estimation},
year={2022},
volume={E105-A},
number={6},
pages={1015-1019},
abstract={In the state estimation of steady-state power networks, a cyber attack that cannot be detected from the residual (i.e., the estimation error) is called a false data injection (FDI) attack. In this letter, to enforce the security of power networks, we propose a method of detecting an FDI attack. In the proposed method, an FDI attack is detected by randomly choosing sensors used in the state estimation. The effectiveness of the proposed method is presented by two examples including the IEEE 14-bus system.},
keywords={},
doi={10.1587/transfun.2021EAL2098},
ISSN={1745-1337},
month={June},}
Copier
TY - JOUR
TI - Sensor Scheduling-Based Detection of False Data Injection Attacks in Power System State Estimation
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 1015
EP - 1019
AU - Sho OBATA
AU - Koichi KOBAYASHI
AU - Yuh YAMASHITA
PY - 2022
DO - 10.1587/transfun.2021EAL2098
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E105-A
IS - 6
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - June 2022
AB - In the state estimation of steady-state power networks, a cyber attack that cannot be detected from the residual (i.e., the estimation error) is called a false data injection (FDI) attack. In this letter, to enforce the security of power networks, we propose a method of detecting an FDI attack. In the proposed method, an FDI attack is detected by randomly choosing sensors used in the state estimation. The effectiveness of the proposed method is presented by two examples including the IEEE 14-bus system.
ER -