The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
La croissance exponentielle des volumes de données a suscité un intérêt généralisé pour les algorithmes adaptatifs sélectifs des données. Dans le cadre d'un travail pionnier, Diniz a développé l'algorithme des moindres carrés moyens sélectif des données (DS-LMS), capable de réduire des quantités spécifiques de données de calcul sans compromettre les performances. Notez cependant que le cadre existant ne prend pas en compte la question du bruit impulsionnel (IN), ce qui peut grandement compromettre les avantages d'un calcul réduit. Dans cette lettre, nous présentons un algorithme de détection IN basé sur les erreurs à mettre en œuvre en conjonction avec l'algorithme DS-LMS. Les évaluations numériques confirment l'efficacité de notre algorithme DS-LMS tolérant IN proposé.
Ying-Ren CHIEN
National Ilan University
Chih-Hsiang YU
National Taiwan University
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Ying-Ren CHIEN, Chih-Hsiang YU, "Impulse-Noise-Tolerant Data-Selective LMS Algorithm" in IEICE TRANSACTIONS on Fundamentals,
vol. E105-A, no. 2, pp. 114-117, February 2022, doi: 10.1587/transfun.2021EAL2046.
Abstract: Exponential growth in data volumes has promoted widespread interest in data-selective adaptive algorithms. In a pioneering work, Diniz developed the data-selective least mean square (DS-LMS) algorithm, which is able to reduce specific quantities of computation data without compromising performance. Note however that the existing framework fails to consider the issue of impulse noise (IN), which can greatly undermine the benefits of reduced computation. In this letter, we present an error-based IN detection algorithm for implementation in conjunction with the DS-LMS algorithm. Numerical evaluations confirm the effectiveness of our proposed IN-tolerant DS-LMS algorithm.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/transfun.2021EAL2046/_p
Copier
@ARTICLE{e105-a_2_114,
author={Ying-Ren CHIEN, Chih-Hsiang YU, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Impulse-Noise-Tolerant Data-Selective LMS Algorithm},
year={2022},
volume={E105-A},
number={2},
pages={114-117},
abstract={Exponential growth in data volumes has promoted widespread interest in data-selective adaptive algorithms. In a pioneering work, Diniz developed the data-selective least mean square (DS-LMS) algorithm, which is able to reduce specific quantities of computation data without compromising performance. Note however that the existing framework fails to consider the issue of impulse noise (IN), which can greatly undermine the benefits of reduced computation. In this letter, we present an error-based IN detection algorithm for implementation in conjunction with the DS-LMS algorithm. Numerical evaluations confirm the effectiveness of our proposed IN-tolerant DS-LMS algorithm.},
keywords={},
doi={10.1587/transfun.2021EAL2046},
ISSN={1745-1337},
month={February},}
Copier
TY - JOUR
TI - Impulse-Noise-Tolerant Data-Selective LMS Algorithm
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 114
EP - 117
AU - Ying-Ren CHIEN
AU - Chih-Hsiang YU
PY - 2022
DO - 10.1587/transfun.2021EAL2046
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E105-A
IS - 2
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - February 2022
AB - Exponential growth in data volumes has promoted widespread interest in data-selective adaptive algorithms. In a pioneering work, Diniz developed the data-selective least mean square (DS-LMS) algorithm, which is able to reduce specific quantities of computation data without compromising performance. Note however that the existing framework fails to consider the issue of impulse noise (IN), which can greatly undermine the benefits of reduced computation. In this letter, we present an error-based IN detection algorithm for implementation in conjunction with the DS-LMS algorithm. Numerical evaluations confirm the effectiveness of our proposed IN-tolerant DS-LMS algorithm.
ER -