The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Dans cet article, nous proposons la notion de schéma de chiffrement fonctionnel multi-entrées basé sur des jetons (MIFE basé sur des jetons) - une notion destinée à donner aux chiffreurs un mécanisme pour contrôler le déchiffrement des messages chiffrés, en étendant les algorithmes de chiffrement et de déchiffrement. pour utiliser en plus des jetons. L'idée de base est qu'un décrypteur doit détenir un jeton de décryptage approprié en plus de sa clé secrète, pour pouvoir décrypter. Ce type de système peut répondre aux problèmes de sécurité pouvant survenir dans les applications de cryptage fonctionnel visant à résoudre le problème de l'analyse des données préservant la confidentialité. Nous formalisons d'abord le MIFE basé sur des jetons, puis proposons deux schémas de base : les deux sont basés sur un schéma MIFE ordinaire, mais le premier utilise en outre un schéma de cryptage à clé publique, tandis que le second utilise une fonction pseudo-aléatoire (PRF). Enfin, nous étendons cette dernière construction pour permettre de limiter les jetons de décryptage à un ensemble spécifié de chiffrements, même si tous les chiffrements ont été effectués en utilisant le même jeton de chiffrement. Ceci est réalisé en utilisant un PRF contraint.
Nuttapong ATTRAPADUNG
National Institute of Advanced Industrial Science and Technology (AIST)
Goichiro HANAOKA
National Institute of Advanced Industrial Science and Technology (AIST)
Takato HIRANO
Mitsubishi Electric Corporation
Yutaka KAWAI
Mitsubishi Electric Corporation
Yoshihiro KOSEKI
Mitsubishi Electric Corporation
Jacob C. N. SCHULDT
National Institute of Advanced Industrial Science and Technology (AIST)
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Nuttapong ATTRAPADUNG, Goichiro HANAOKA, Takato HIRANO, Yutaka KAWAI, Yoshihiro KOSEKI, Jacob C. N. SCHULDT, "Multi-Input Functional Encryption with Controlled Decryption" in IEICE TRANSACTIONS on Fundamentals,
vol. E104-A, no. 7, pp. 968-978, July 2021, doi: 10.1587/transfun.2020EAP1074.
Abstract: In this paper, we put forward the notion of a token-based multi-input functional encryption (token-based MIFE) scheme - a notion intended to give encryptors a mechanism to control the decryption of encrypted messages, by extending the encryption and decryption algorithms to additionally use tokens. The basic idea is that a decryptor must hold an appropriate decryption token in addition to his secrete key, to be able to decrypt. This type of scheme can address security concerns potentially arising in applications of functional encryption aimed at addressing the problem of privacy preserving data analysis. We firstly formalize token-based MIFE, and then provide two basic schemes; both are based on an ordinary MIFE scheme, but the first additionally makes use of a public key encryption scheme, whereas the second makes use of a pseudorandom function (PRF). Lastly, we extend the latter construction to allow decryption tokens to be restricted to specified set of encryptions, even if all encryptions have been done using the same encryption token. This is achieved by using a constrained PRF.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/transfun.2020EAP1074/_p
Copier
@ARTICLE{e104-a_7_968,
author={Nuttapong ATTRAPADUNG, Goichiro HANAOKA, Takato HIRANO, Yutaka KAWAI, Yoshihiro KOSEKI, Jacob C. N. SCHULDT, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Multi-Input Functional Encryption with Controlled Decryption},
year={2021},
volume={E104-A},
number={7},
pages={968-978},
abstract={In this paper, we put forward the notion of a token-based multi-input functional encryption (token-based MIFE) scheme - a notion intended to give encryptors a mechanism to control the decryption of encrypted messages, by extending the encryption and decryption algorithms to additionally use tokens. The basic idea is that a decryptor must hold an appropriate decryption token in addition to his secrete key, to be able to decrypt. This type of scheme can address security concerns potentially arising in applications of functional encryption aimed at addressing the problem of privacy preserving data analysis. We firstly formalize token-based MIFE, and then provide two basic schemes; both are based on an ordinary MIFE scheme, but the first additionally makes use of a public key encryption scheme, whereas the second makes use of a pseudorandom function (PRF). Lastly, we extend the latter construction to allow decryption tokens to be restricted to specified set of encryptions, even if all encryptions have been done using the same encryption token. This is achieved by using a constrained PRF.},
keywords={},
doi={10.1587/transfun.2020EAP1074},
ISSN={1745-1337},
month={July},}
Copier
TY - JOUR
TI - Multi-Input Functional Encryption with Controlled Decryption
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 968
EP - 978
AU - Nuttapong ATTRAPADUNG
AU - Goichiro HANAOKA
AU - Takato HIRANO
AU - Yutaka KAWAI
AU - Yoshihiro KOSEKI
AU - Jacob C. N. SCHULDT
PY - 2021
DO - 10.1587/transfun.2020EAP1074
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E104-A
IS - 7
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - July 2021
AB - In this paper, we put forward the notion of a token-based multi-input functional encryption (token-based MIFE) scheme - a notion intended to give encryptors a mechanism to control the decryption of encrypted messages, by extending the encryption and decryption algorithms to additionally use tokens. The basic idea is that a decryptor must hold an appropriate decryption token in addition to his secrete key, to be able to decrypt. This type of scheme can address security concerns potentially arising in applications of functional encryption aimed at addressing the problem of privacy preserving data analysis. We firstly formalize token-based MIFE, and then provide two basic schemes; both are based on an ordinary MIFE scheme, but the first additionally makes use of a public key encryption scheme, whereas the second makes use of a pseudorandom function (PRF). Lastly, we extend the latter construction to allow decryption tokens to be restricted to specified set of encryptions, even if all encryptions have been done using the same encryption token. This is achieved by using a constrained PRF.
ER -