The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Dans la théorie des réseaux orthogonaux, un réseau orthogonal (OA) est appelé schématique si ses lignes forment un schéma d'association par rapport aux distances de Hamming. Dans cet article, nous étudions les distances de Hamming de deux lignes quelconques dans un OA, construisons des OA schématiques de force deux et donnons la solution positive au problème ouvert de classification de tous les OA schématiques. Quelques exemples sont donnés pour illustrer nos méthodes.
Shanqi PANG
Henan Normal University
Yongmei LI
Henan Normal University
Rong YAN
Henan Normal University
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Shanqi PANG, Yongmei LI, Rong YAN, "Schematic Orthogonal Arrays of Strength Two" in IEICE TRANSACTIONS on Fundamentals,
vol. E103-A, no. 2, pp. 556-562, February 2020, doi: 10.1587/transfun.2019EAL2088.
Abstract: In the theory of orthogonal arrays, an orthogonal array (OA) is called schematic if its rows form an association scheme with respect to Hamming distances. In this paper, we study the Hamming distances of any two rows in an OA, construct some schematic OAs of strength two and give the positive solution to the open problem for classifying all schematic OAs. Some examples are given to illustrate our methods.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/transfun.2019EAL2088/_p
Copier
@ARTICLE{e103-a_2_556,
author={Shanqi PANG, Yongmei LI, Rong YAN, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Schematic Orthogonal Arrays of Strength Two},
year={2020},
volume={E103-A},
number={2},
pages={556-562},
abstract={In the theory of orthogonal arrays, an orthogonal array (OA) is called schematic if its rows form an association scheme with respect to Hamming distances. In this paper, we study the Hamming distances of any two rows in an OA, construct some schematic OAs of strength two and give the positive solution to the open problem for classifying all schematic OAs. Some examples are given to illustrate our methods.},
keywords={},
doi={10.1587/transfun.2019EAL2088},
ISSN={1745-1337},
month={February},}
Copier
TY - JOUR
TI - Schematic Orthogonal Arrays of Strength Two
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 556
EP - 562
AU - Shanqi PANG
AU - Yongmei LI
AU - Rong YAN
PY - 2020
DO - 10.1587/transfun.2019EAL2088
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E103-A
IS - 2
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - February 2020
AB - In the theory of orthogonal arrays, an orthogonal array (OA) is called schematic if its rows form an association scheme with respect to Hamming distances. In this paper, we study the Hamming distances of any two rows in an OA, construct some schematic OAs of strength two and give the positive solution to the open problem for classifying all schematic OAs. Some examples are given to illustrate our methods.
ER -