The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Les signaux radio présentent de petites différences caractéristiques entre les émetteurs radio résultant de leurs propriétés matérielles idiosyncrasiques. Basée sur l'estimation des paramètres des imperfections de l'émetteur, une nouvelle méthode d'identification radiométrique est présentée dans cette lettre. Les caractéristiques d'empreinte digitale de la radio sont extraites des disparités du modulateur et de la non-linéarité de l'amplificateur de puissance, et utilisées pour entraîner un classificateur de machine à vecteurs de support afin d'identifier l'étiquette de classe d'une nouvelle donnée. Des expériences sur des ensembles de données réels démontrent la validation de cette méthode.
You Zhu LI
Sichuan University,Sichuan Normal University
Yong Qiang JIA
the Southwest Electronics and Telecommunication Technology Research Institute
Hong Shu LIAO
University of Electronic Science and Technology of China
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
You Zhu LI, Yong Qiang JIA, Hong Shu LIAO, "Radiometric Identification Based on Parameters Estimation of Transmitter Imperfections" in IEICE TRANSACTIONS on Fundamentals,
vol. E103-A, no. 2, pp. 563-566, February 2020, doi: 10.1587/transfun.2019EAL2084.
Abstract: Radio signals show small characteristic differences between radio transmitters resulted from their idiosyncratic hardware properties. Based on the parameters estimation of transmitter imperfections, a novel radiometric identification method is presented in this letter. The fingerprint features of the radio are extracted from the mismatches of the modulator and the nonlinearity of the power amplifier, and used to train a support vector machine classifier to identify the class label of a new data. Experiments on real data sets demonstrate the validation of this method.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/transfun.2019EAL2084/_p
Copier
@ARTICLE{e103-a_2_563,
author={You Zhu LI, Yong Qiang JIA, Hong Shu LIAO, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Radiometric Identification Based on Parameters Estimation of Transmitter Imperfections},
year={2020},
volume={E103-A},
number={2},
pages={563-566},
abstract={Radio signals show small characteristic differences between radio transmitters resulted from their idiosyncratic hardware properties. Based on the parameters estimation of transmitter imperfections, a novel radiometric identification method is presented in this letter. The fingerprint features of the radio are extracted from the mismatches of the modulator and the nonlinearity of the power amplifier, and used to train a support vector machine classifier to identify the class label of a new data. Experiments on real data sets demonstrate the validation of this method.},
keywords={},
doi={10.1587/transfun.2019EAL2084},
ISSN={1745-1337},
month={February},}
Copier
TY - JOUR
TI - Radiometric Identification Based on Parameters Estimation of Transmitter Imperfections
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 563
EP - 566
AU - You Zhu LI
AU - Yong Qiang JIA
AU - Hong Shu LIAO
PY - 2020
DO - 10.1587/transfun.2019EAL2084
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E103-A
IS - 2
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - February 2020
AB - Radio signals show small characteristic differences between radio transmitters resulted from their idiosyncratic hardware properties. Based on the parameters estimation of transmitter imperfections, a novel radiometric identification method is presented in this letter. The fingerprint features of the radio are extracted from the mismatches of the modulator and the nonlinearity of the power amplifier, and used to train a support vector machine classifier to identify the class label of a new data. Experiments on real data sets demonstrate the validation of this method.
ER -