The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Le chiffrement fonctionnel du produit interne (IPFE) est une sous-classe du chiffrement fonctionnel (FE), dont la classe de fonctions est limitée au produit interne. Nous construisons un schéma IPFE à clé privée efficace avec une sécurité entièrement masquée, où la confidentialité est assurée non seulement pour les données cryptées mais également pour les fonctions associées aux clés secrètes. Récemment, Datta et al. a présenté un tel schéma dans PKC 2016 et c'est le seul schéma qui permet d'obtenir une sécurité totale. Notre système a un avantage sur leur système pour les deux aspects. Plus efficace: les clés et les textes chiffrés de notre schéma font presque la moitié de la taille de ceux de leur schéma. Hypothèse plus faible: notre système est sécurisé sous le k-linéaire (k-Lin), tandis que leur schéma est sécurisé sous une hypothèse plus forte, à savoir l'hypothèse symétrique externe de Diffie-Hellman (SXDH). Il est bien connu que le kL’hypothèse -Lin est équivalente à l’hypothèse SXDH lorsque k=1 et devient faible lorsque k Augmente.
Junichi TOMIDA
NTT Corporation
Masayuki ABE
NTT Corporation
Tatsuaki OKAMOTO
NTT Corporation
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Junichi TOMIDA, Masayuki ABE, Tatsuaki OKAMOTO, "Efficient Inner Product Functional Encryption with Full-Hiding Security" in IEICE TRANSACTIONS on Fundamentals,
vol. E103-A, no. 1, pp. 33-40, January 2020, doi: 10.1587/transfun.2019CIP0003.
Abstract: Inner product functional encryption (IPFE) is a subclass of functional encryption (FE), whose function class is limited to inner product. We construct an efficient private-key IPFE scheme with full-hiding security, where confidentiality is assured for not only encrypted data but also functions associated with secret keys. Recently, Datta et al. presented such a scheme in PKC 2016 and this is the only scheme that achieves full-hiding security. Our scheme has an advantage over their scheme for the two aspects. More efficient: keys and ciphertexts of our scheme are almost half the size of those of their scheme. Weaker assumption: our scheme is secure under the k-linear (k-Lin) assumption, while their scheme is secure under a stronger assumption, namely, the symmetric external Diffie-Hellman (SXDH) assumption. It is well-known that the k-Lin assumption is equivalent to the SXDH assumption when k=1 and becomes weak as k increases.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/transfun.2019CIP0003/_p
Copier
@ARTICLE{e103-a_1_33,
author={Junichi TOMIDA, Masayuki ABE, Tatsuaki OKAMOTO, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Efficient Inner Product Functional Encryption with Full-Hiding Security},
year={2020},
volume={E103-A},
number={1},
pages={33-40},
abstract={Inner product functional encryption (IPFE) is a subclass of functional encryption (FE), whose function class is limited to inner product. We construct an efficient private-key IPFE scheme with full-hiding security, where confidentiality is assured for not only encrypted data but also functions associated with secret keys. Recently, Datta et al. presented such a scheme in PKC 2016 and this is the only scheme that achieves full-hiding security. Our scheme has an advantage over their scheme for the two aspects. More efficient: keys and ciphertexts of our scheme are almost half the size of those of their scheme. Weaker assumption: our scheme is secure under the k-linear (k-Lin) assumption, while their scheme is secure under a stronger assumption, namely, the symmetric external Diffie-Hellman (SXDH) assumption. It is well-known that the k-Lin assumption is equivalent to the SXDH assumption when k=1 and becomes weak as k increases.},
keywords={},
doi={10.1587/transfun.2019CIP0003},
ISSN={1745-1337},
month={January},}
Copier
TY - JOUR
TI - Efficient Inner Product Functional Encryption with Full-Hiding Security
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 33
EP - 40
AU - Junichi TOMIDA
AU - Masayuki ABE
AU - Tatsuaki OKAMOTO
PY - 2020
DO - 10.1587/transfun.2019CIP0003
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E103-A
IS - 1
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - January 2020
AB - Inner product functional encryption (IPFE) is a subclass of functional encryption (FE), whose function class is limited to inner product. We construct an efficient private-key IPFE scheme with full-hiding security, where confidentiality is assured for not only encrypted data but also functions associated with secret keys. Recently, Datta et al. presented such a scheme in PKC 2016 and this is the only scheme that achieves full-hiding security. Our scheme has an advantage over their scheme for the two aspects. More efficient: keys and ciphertexts of our scheme are almost half the size of those of their scheme. Weaker assumption: our scheme is secure under the k-linear (k-Lin) assumption, while their scheme is secure under a stronger assumption, namely, the symmetric external Diffie-Hellman (SXDH) assumption. It is well-known that the k-Lin assumption is equivalent to the SXDH assumption when k=1 and becomes weak as k increases.
ER -