The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Les filtres numériques à coefficients hypercomplexes offrent plusieurs avantages attrayants tels qu'une réalisation compacte avec un ordre système réduit et un parallélisme inhérent. Cependant, ils présentent également un inconvénient dans la mesure où un multiplicateur nécessite une grande quantité de calculs. Cet article propose une implémentation informatiquement efficace de filtres numériques dont le coefficient est un type de nombre hypercomplexe ; un nombre bicomplexe. En décomposant un multiplicateur bicomplexe en deux multiplicateurs complexes parallèles, nous montrons que les filtres numériques hypercomplexes peuvent être implémentés comme deux filtres numériques complexes parallèles. La mise en œuvre proposée offre une réduction de plus de 60 % du nombre de multiplicateurs réels.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Hisamichi TOYOSHIMA, "Computationally Efficient Implementation of Hypercomplex Digital Filters" in IEICE TRANSACTIONS on Fundamentals,
vol. E85-A, no. 8, pp. 1870-1876, August 2002, doi: .
Abstract: Hypercomplex coefficient digital filters provide several attractive advantages such as compact realization with reduced system order, inherent parallelism. However, they also possess a drawback in that a multiplier requires a large amount of computations. This paper proposes a computationally efficient implementation of digital filters whose coefficient is a type of hypercomplex number; a bicomplex number. By decomposing a bicomplex multiplier into two parallel complex multipliers, we show that hypercomplex digital filters can be implemented as two parallel complex digital filters. The proposed implementation offers more than a 60% reduction in the count of real multipliers.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/e85-a_8_1870/_p
Copier
@ARTICLE{e85-a_8_1870,
author={Hisamichi TOYOSHIMA, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Computationally Efficient Implementation of Hypercomplex Digital Filters},
year={2002},
volume={E85-A},
number={8},
pages={1870-1876},
abstract={Hypercomplex coefficient digital filters provide several attractive advantages such as compact realization with reduced system order, inherent parallelism. However, they also possess a drawback in that a multiplier requires a large amount of computations. This paper proposes a computationally efficient implementation of digital filters whose coefficient is a type of hypercomplex number; a bicomplex number. By decomposing a bicomplex multiplier into two parallel complex multipliers, we show that hypercomplex digital filters can be implemented as two parallel complex digital filters. The proposed implementation offers more than a 60% reduction in the count of real multipliers.},
keywords={},
doi={},
ISSN={},
month={August},}
Copier
TY - JOUR
TI - Computationally Efficient Implementation of Hypercomplex Digital Filters
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 1870
EP - 1876
AU - Hisamichi TOYOSHIMA
PY - 2002
DO -
JO - IEICE TRANSACTIONS on Fundamentals
SN -
VL - E85-A
IS - 8
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - August 2002
AB - Hypercomplex coefficient digital filters provide several attractive advantages such as compact realization with reduced system order, inherent parallelism. However, they also possess a drawback in that a multiplier requires a large amount of computations. This paper proposes a computationally efficient implementation of digital filters whose coefficient is a type of hypercomplex number; a bicomplex number. By decomposing a bicomplex multiplier into two parallel complex multipliers, we show that hypercomplex digital filters can be implemented as two parallel complex digital filters. The proposed implementation offers more than a 60% reduction in the count of real multipliers.
ER -