The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Dans cet article, nous étudions les résonances combinatoires non linéaires fondamentales d'un système constitué de deux circuits forcés périodiques identiques couplés par une résistance linéaire. Les équations du circuit sont décrites par un système d'équations de Duffing couplées. Nous discutons de deux cas de force périodique externe, c'est-à-dire en phase et anti-phase, et obtenons le diagramme de bifurcation de chaque cas. Les solutions périodiques sont classées selon la propriété symétrique du circuit. Les résonances dans le système couplé sont expliquées du point de vue combinatoire. Autrement dit, nous introduisons la définition des résonances combinatoires et étudions les modèles de solutions combinatoires dans ce système.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Yue MA, Hiroshi KAWAKAMI, "Combinatorial Resonances in Coupled Duffing's Circuits" in IEICE TRANSACTIONS on Fundamentals,
vol. E85-A, no. 3, pp. 648-654, March 2002, doi: .
Abstract: In this paper, we study the fundamental combinatorial nonlinear resonances of a system consisting of two identical periodic forced circuits coupled by a linear resistor. The circuit equations are described by a system of coupled Duffing's equations. We discuss two cases of external periodic force, i.e., in-phase and anti-phase, and obtain the bifurcation diagram of each case. Periodic solutions are classified according to the symmetrical property of the circuit. Resonances in the coupled system are explained from the combinatorial standpoint. That is, we introduce the definition of combinatorial resonances and investigate the patterns of combinatorial solutions in this system.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/e85-a_3_648/_p
Copier
@ARTICLE{e85-a_3_648,
author={Yue MA, Hiroshi KAWAKAMI, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Combinatorial Resonances in Coupled Duffing's Circuits},
year={2002},
volume={E85-A},
number={3},
pages={648-654},
abstract={In this paper, we study the fundamental combinatorial nonlinear resonances of a system consisting of two identical periodic forced circuits coupled by a linear resistor. The circuit equations are described by a system of coupled Duffing's equations. We discuss two cases of external periodic force, i.e., in-phase and anti-phase, and obtain the bifurcation diagram of each case. Periodic solutions are classified according to the symmetrical property of the circuit. Resonances in the coupled system are explained from the combinatorial standpoint. That is, we introduce the definition of combinatorial resonances and investigate the patterns of combinatorial solutions in this system.},
keywords={},
doi={},
ISSN={},
month={March},}
Copier
TY - JOUR
TI - Combinatorial Resonances in Coupled Duffing's Circuits
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 648
EP - 654
AU - Yue MA
AU - Hiroshi KAWAKAMI
PY - 2002
DO -
JO - IEICE TRANSACTIONS on Fundamentals
SN -
VL - E85-A
IS - 3
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - March 2002
AB - In this paper, we study the fundamental combinatorial nonlinear resonances of a system consisting of two identical periodic forced circuits coupled by a linear resistor. The circuit equations are described by a system of coupled Duffing's equations. We discuss two cases of external periodic force, i.e., in-phase and anti-phase, and obtain the bifurcation diagram of each case. Periodic solutions are classified according to the symmetrical property of the circuit. Resonances in the coupled system are explained from the combinatorial standpoint. That is, we introduce the definition of combinatorial resonances and investigate the patterns of combinatorial solutions in this system.
ER -