The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Dans cet article, nous étudions les systèmes autodiagnosticables sur les systèmes multiprocesseurs, connus sous le nom de systèmes en une étape. t-les systèmes diagnosticables introduits par Preparata et al. Kohda a proposé un « système hautement structuré » pour concevoir des systèmes diagnosticables de telle sorte que les processeurs défectueux soient diagnostiqués efficacement. D’un autre côté, on sait que les graphes de Cayley ont été étudiés comme de bons modèles pour les architectures de systèmes de processeurs parallèles à grande échelle. Nous étudions certaines conditions pour que les graphes de Cayley soient des topologies pour des systèmes diagnosticables optimaux hautement structurés, et présentons plusieurs exemples de systèmes diagnosticables optimaux représentés par des graphes de Cayley.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Toru ARAKI, Yukio SHIBATA, "Optimal Diagnosable Systems on Cayley Graphs" in IEICE TRANSACTIONS on Fundamentals,
vol. E85-A, no. 2, pp. 455-462, February 2002, doi: .
Abstract: In this paper, we investigate self diagnosable systems on multi-processor systems, known as one-step t-diagnosable systems introduced by Preparata et al. Kohda has proposed "highly structured system" to design diagnosable systems such that faulty processors are diagnosed efficiently. On the other hand, it is known that Cayley graphs have been investigated as good models for architectures of large-scale parallel processor systems. We investigate some conditions for Cayley graphs to be topologies for optimal highly structured diagnosable systems, and present several examples of optimal diagnosable systems represented by Cayley graphs.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/e85-a_2_455/_p
Copier
@ARTICLE{e85-a_2_455,
author={Toru ARAKI, Yukio SHIBATA, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Optimal Diagnosable Systems on Cayley Graphs},
year={2002},
volume={E85-A},
number={2},
pages={455-462},
abstract={In this paper, we investigate self diagnosable systems on multi-processor systems, known as one-step t-diagnosable systems introduced by Preparata et al. Kohda has proposed "highly structured system" to design diagnosable systems such that faulty processors are diagnosed efficiently. On the other hand, it is known that Cayley graphs have been investigated as good models for architectures of large-scale parallel processor systems. We investigate some conditions for Cayley graphs to be topologies for optimal highly structured diagnosable systems, and present several examples of optimal diagnosable systems represented by Cayley graphs.},
keywords={},
doi={},
ISSN={},
month={February},}
Copier
TY - JOUR
TI - Optimal Diagnosable Systems on Cayley Graphs
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 455
EP - 462
AU - Toru ARAKI
AU - Yukio SHIBATA
PY - 2002
DO -
JO - IEICE TRANSACTIONS on Fundamentals
SN -
VL - E85-A
IS - 2
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - February 2002
AB - In this paper, we investigate self diagnosable systems on multi-processor systems, known as one-step t-diagnosable systems introduced by Preparata et al. Kohda has proposed "highly structured system" to design diagnosable systems such that faulty processors are diagnosed efficiently. On the other hand, it is known that Cayley graphs have been investigated as good models for architectures of large-scale parallel processor systems. We investigate some conditions for Cayley graphs to be topologies for optimal highly structured diagnosable systems, and present several examples of optimal diagnosable systems represented by Cayley graphs.
ER -