The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Une fonction de trappe unidirectionnelle est une version étendue d'une permutation à sens zéro. Une permutation zéro a été introduite pour la première fois par Niemi-Renvall dans Asiacrypt'94. Dans cet article, nous définissons la classe de fonctions appelée fonctions sans issue. Il s'agit d'une version étendue d'une permutation zéro. Intuitivement, une fonction f n'est pas possible si, sans trappe, les deux ordinateurs f et informatique f-1 sont durs. Li-Chida-Shizuya a défini la notion de certainement pas fonction, qui est une version à sécurité prouvable d'une permutation zéro. Ils ont également donné un exemple de fonction sans issue telle que l'informatique f et f-1 s'avère aussi difficile que de briser le système d'échange de clés Diffie-Hellman. Nous redéfinissons la notion de trappe sans issue fonctionner plus précieusement, classer les fonctions d'impasse selon la propriété de la trappe : impasse commune, séparée et semi-séparée, donner une méthode pour construire les fonctions d'impasse de la trappe à partir des fonctions unidirectionnelles de la trappe, et donner également un exemple des fonctions d'absence de trappe.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Eikoh CHIDA, Motoji OHMORI, Hiroki SHIZUYA, "A Way of Making Trapdoor One-Way Functions Trapdoor No-Way" in IEICE TRANSACTIONS on Fundamentals,
vol. E84-A, no. 1, pp. 151-156, January 2001, doi: .
Abstract: A trapdoor one-way function is an extended version of a zero-way permutation. A zero-way permutation was first introduced by Niemi-Renvall in Asiacrypt'94. In this paper we define the class of functions called no-way functions. This is an extended version of a zero-way permutation. Intuitively, a function f is no-way if, without trapdoor, both computing f and computing f-1 are hard. Li-Chida-Shizuya defined the notion of a no-way function, which is a provable-security version of a zero-way permutation. They also gave an example of a no-way function such that computing f and f-1 is proven to be as hard as breaking the Diffie-Hellman key exchange scheme. We redefine the notion of a trapdoor no-way function more preciously, classify no-way functions by the property of the trapdoor: common, separated and semi-separated trapdoor no-way, give a method for constructing trapdoor no-way functions from trapdoor one-way functions, and also give an example of trapdoor no-way functions.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/e84-a_1_151/_p
Copier
@ARTICLE{e84-a_1_151,
author={Eikoh CHIDA, Motoji OHMORI, Hiroki SHIZUYA, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={A Way of Making Trapdoor One-Way Functions Trapdoor No-Way},
year={2001},
volume={E84-A},
number={1},
pages={151-156},
abstract={A trapdoor one-way function is an extended version of a zero-way permutation. A zero-way permutation was first introduced by Niemi-Renvall in Asiacrypt'94. In this paper we define the class of functions called no-way functions. This is an extended version of a zero-way permutation. Intuitively, a function f is no-way if, without trapdoor, both computing f and computing f-1 are hard. Li-Chida-Shizuya defined the notion of a no-way function, which is a provable-security version of a zero-way permutation. They also gave an example of a no-way function such that computing f and f-1 is proven to be as hard as breaking the Diffie-Hellman key exchange scheme. We redefine the notion of a trapdoor no-way function more preciously, classify no-way functions by the property of the trapdoor: common, separated and semi-separated trapdoor no-way, give a method for constructing trapdoor no-way functions from trapdoor one-way functions, and also give an example of trapdoor no-way functions.},
keywords={},
doi={},
ISSN={},
month={January},}
Copier
TY - JOUR
TI - A Way of Making Trapdoor One-Way Functions Trapdoor No-Way
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 151
EP - 156
AU - Eikoh CHIDA
AU - Motoji OHMORI
AU - Hiroki SHIZUYA
PY - 2001
DO -
JO - IEICE TRANSACTIONS on Fundamentals
SN -
VL - E84-A
IS - 1
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - January 2001
AB - A trapdoor one-way function is an extended version of a zero-way permutation. A zero-way permutation was first introduced by Niemi-Renvall in Asiacrypt'94. In this paper we define the class of functions called no-way functions. This is an extended version of a zero-way permutation. Intuitively, a function f is no-way if, without trapdoor, both computing f and computing f-1 are hard. Li-Chida-Shizuya defined the notion of a no-way function, which is a provable-security version of a zero-way permutation. They also gave an example of a no-way function such that computing f and f-1 is proven to be as hard as breaking the Diffie-Hellman key exchange scheme. We redefine the notion of a trapdoor no-way function more preciously, classify no-way functions by the property of the trapdoor: common, separated and semi-separated trapdoor no-way, give a method for constructing trapdoor no-way functions from trapdoor one-way functions, and also give an example of trapdoor no-way functions.
ER -