The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Dans cet article, nous étudions le contrôle de supervision non bloquant de systèmes à événements discrets sous observation partielle. Nous introduisons une condition de normalité faible définie en termes d'une carte de projection naturelle modifiée. La condition de normalité faible est plus faible que la condition d’origine et plus forte que la condition d’observabilité. De plus, il est conservé sous union. Étant donné une spécification de langage marquée, nous présentons une procédure de calcul du sous-langage suprême qui satisfait Lm(G)-fermeture, contrôlabilité et faible normalité. Il existe un superviseur non bloquant pour ce sous-langage suprême. Un tel superviseur est plus permissif que celui qui atteint le pouvoir suprême. Lm(G)-sous-langage fermé, contrôlable et normal.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Shigemasa TAKAI, Toshimitsu USHIO, "Weak Normality for Nonblocking Supervisory Control of Discrete Event Systems under Partial Observation" in IEICE TRANSACTIONS on Fundamentals,
vol. E84-A, no. 11, pp. 2822-2828, November 2001, doi: .
Abstract: In this paper, we study nonblocking supervisory control of discrete event systems under partial observation. We introduce a weak normality condition defined in terms of a modified natural projection map. The weak normality condition is weaker than the original one and stronger than the observability condition. Moreover, it is preserved under union. Given a marked language specification, we present a procedure for computing the supremal sublanguage which satisfies Lm(G)-closure, controllability, and weak normality. There exists a nonblocking supervisor for this supremal sublanguage. Such a supervisor is more permissive than the one which achieves the supremal Lm(G)-closed, controllable, and normal sublanguage.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/e84-a_11_2822/_p
Copier
@ARTICLE{e84-a_11_2822,
author={Shigemasa TAKAI, Toshimitsu USHIO, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Weak Normality for Nonblocking Supervisory Control of Discrete Event Systems under Partial Observation},
year={2001},
volume={E84-A},
number={11},
pages={2822-2828},
abstract={In this paper, we study nonblocking supervisory control of discrete event systems under partial observation. We introduce a weak normality condition defined in terms of a modified natural projection map. The weak normality condition is weaker than the original one and stronger than the observability condition. Moreover, it is preserved under union. Given a marked language specification, we present a procedure for computing the supremal sublanguage which satisfies Lm(G)-closure, controllability, and weak normality. There exists a nonblocking supervisor for this supremal sublanguage. Such a supervisor is more permissive than the one which achieves the supremal Lm(G)-closed, controllable, and normal sublanguage.},
keywords={},
doi={},
ISSN={},
month={November},}
Copier
TY - JOUR
TI - Weak Normality for Nonblocking Supervisory Control of Discrete Event Systems under Partial Observation
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 2822
EP - 2828
AU - Shigemasa TAKAI
AU - Toshimitsu USHIO
PY - 2001
DO -
JO - IEICE TRANSACTIONS on Fundamentals
SN -
VL - E84-A
IS - 11
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - November 2001
AB - In this paper, we study nonblocking supervisory control of discrete event systems under partial observation. We introduce a weak normality condition defined in terms of a modified natural projection map. The weak normality condition is weaker than the original one and stronger than the observability condition. Moreover, it is preserved under union. Given a marked language specification, we present a procedure for computing the supremal sublanguage which satisfies Lm(G)-closure, controllability, and weak normality. There exists a nonblocking supervisor for this supremal sublanguage. Such a supervisor is more permissive than the one which achieves the supremal Lm(G)-closed, controllable, and normal sublanguage.
ER -