The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
La capacité du canal quantique avec les états d’entrée du produit a été formulée par le théorème du codage quantique. Cependant, la question de savoir si les états d’entrée intriqués peuvent améliorer le canal quantique reste à déterminer. Il s’avère que ce problème est réduit à un cas particulier du problème plus général de savoir si la capacité du canal quantique du produit présente une additivité. Dans la présente étude, nous appliquons un des algorithmes quantiques de type Arimoto-Blahut à ce dernier problème. Les résultats suggèrent que l'additivité de la capacité du canal quantique du produit est toujours valable et que les états d'entrée intriqués ne peuvent pas améliorer la capacité du canal quantique.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Susumu OSAWA, Hiroshi NAGAOKA, "Numerical Experiments on the Capacity of Quantum Channel with Entangled Input States" in IEICE TRANSACTIONS on Fundamentals,
vol. E84-A, no. 10, pp. 2583-2590, October 2001, doi: .
Abstract: The capacity of quantum channel with product input states was formulated by the quantum coding theorem. However, whether entangled input states can enhance the quantum channel is still open. It turns out that this problem is reduced to a special case of the more general problem whether the capacity of product quantum channel exhibits additivity. In the present study, we apply one of the quantum Arimoto-Blahut type algorithms to the latter problem. The results suggest that the additivity of product quantum channel capacity always holds and that entangled input states cannot enhance the quantum channel capacity.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/e84-a_10_2583/_p
Copier
@ARTICLE{e84-a_10_2583,
author={Susumu OSAWA, Hiroshi NAGAOKA, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Numerical Experiments on the Capacity of Quantum Channel with Entangled Input States},
year={2001},
volume={E84-A},
number={10},
pages={2583-2590},
abstract={The capacity of quantum channel with product input states was formulated by the quantum coding theorem. However, whether entangled input states can enhance the quantum channel is still open. It turns out that this problem is reduced to a special case of the more general problem whether the capacity of product quantum channel exhibits additivity. In the present study, we apply one of the quantum Arimoto-Blahut type algorithms to the latter problem. The results suggest that the additivity of product quantum channel capacity always holds and that entangled input states cannot enhance the quantum channel capacity.},
keywords={},
doi={},
ISSN={},
month={October},}
Copier
TY - JOUR
TI - Numerical Experiments on the Capacity of Quantum Channel with Entangled Input States
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 2583
EP - 2590
AU - Susumu OSAWA
AU - Hiroshi NAGAOKA
PY - 2001
DO -
JO - IEICE TRANSACTIONS on Fundamentals
SN -
VL - E84-A
IS - 10
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - October 2001
AB - The capacity of quantum channel with product input states was formulated by the quantum coding theorem. However, whether entangled input states can enhance the quantum channel is still open. It turns out that this problem is reduced to a special case of the more general problem whether the capacity of product quantum channel exhibits additivity. In the present study, we apply one of the quantum Arimoto-Blahut type algorithms to the latter problem. The results suggest that the additivity of product quantum channel capacity always holds and that entangled input states cannot enhance the quantum channel capacity.
ER -