The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Cet article présente les limites supérieures du taux d'erreur binaire (BER) moyen de détection cohérente de PSK et de détection différentielle de DPSK avec des réseaux adaptatifs dans des environnements à évanouissement. Un modèle dans lequel un composant de ligne de visée (LOS) et des composants de diffusion distribuée Rayleigh arrivent à un récepteur avec des angles d'arrivée spécifiques est utilisé en considérant la corrélation du signal entre plusieurs antennes. Les limites supérieures sont exprimées sous forme matricielle simple à l'aide de matrices de corrélation signal et interférence plus bruit. Des exemples pour le cas de tableaux adaptatifs à 4 éléments sont donnés pour illustrer l'étroitesse et l'application de ces limites supérieures.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Yoshitaka HARA, "Upper Bounds on the Average BER of Adaptive Arrays in Fading Environments" in IEICE TRANSACTIONS on Fundamentals,
vol. E83-A, no. 7, pp. 1365-1369, July 2000, doi: .
Abstract: This paper presents upper bounds on the average bit error rate (BER) of coherent detection of PSK and differential detection of DPSK with adaptive arrays in fading environments. A model where a line of sight (LOS) component and Rayleigh distributed scattering components arrive at a receiver with specific arrival angles is used considering the correlation of signal between multiple antennas. The upper bounds are expressed in a simple matrix form using signal and interference-plus-noise correlation matrices. Examples for the case of 4-element adaptive arrays are given to illustrate the tightness and the application of this upper bounds.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/e83-a_7_1365/_p
Copier
@ARTICLE{e83-a_7_1365,
author={Yoshitaka HARA, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Upper Bounds on the Average BER of Adaptive Arrays in Fading Environments},
year={2000},
volume={E83-A},
number={7},
pages={1365-1369},
abstract={This paper presents upper bounds on the average bit error rate (BER) of coherent detection of PSK and differential detection of DPSK with adaptive arrays in fading environments. A model where a line of sight (LOS) component and Rayleigh distributed scattering components arrive at a receiver with specific arrival angles is used considering the correlation of signal between multiple antennas. The upper bounds are expressed in a simple matrix form using signal and interference-plus-noise correlation matrices. Examples for the case of 4-element adaptive arrays are given to illustrate the tightness and the application of this upper bounds.},
keywords={},
doi={},
ISSN={},
month={July},}
Copier
TY - JOUR
TI - Upper Bounds on the Average BER of Adaptive Arrays in Fading Environments
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 1365
EP - 1369
AU - Yoshitaka HARA
PY - 2000
DO -
JO - IEICE TRANSACTIONS on Fundamentals
SN -
VL - E83-A
IS - 7
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - July 2000
AB - This paper presents upper bounds on the average bit error rate (BER) of coherent detection of PSK and differential detection of DPSK with adaptive arrays in fading environments. A model where a line of sight (LOS) component and Rayleigh distributed scattering components arrive at a receiver with specific arrival angles is used considering the correlation of signal between multiple antennas. The upper bounds are expressed in a simple matrix form using signal and interference-plus-noise correlation matrices. Examples for the case of 4-element adaptive arrays are given to illustrate the tightness and the application of this upper bounds.
ER -