The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Pour mettre en œuvre un transfert progressif dans les systèmes de communication cellulaire qui utilisent l'accès multiple par répartition en code (CDMA), il est nécessaire d'établir des lignes de communication entre le commutateur et plusieurs stations de base et de distribuer simultanément les données de communication via ces multi-connexions aux stations de base. Cela signifie que, lorsqu'un transfert soft est effectué avec la même quantité de ressources de ligne de communication qu'un transfert hard, la probabilité de blocage est plus élevée que pour un handoff hard, et la qualité du service est donc moins bonne. De plus, les transferts se produisent plus fréquemment à mesure que la taille des cellules diminue, ce qui augmente la probabilité de terminaisons forcées. Les commutateurs doivent être dotés d’une plus grande capacité de traitement pour s’adapter aux transferts plus fréquents. On peut s'attendre, en général, à ce que l'utilisation de la méthode de transfert par mise en file d'attente atténue la probabilité de terminaison forcée par rapport à la méthode de transfert immédiat. À cet égard, nous proposons une méthode de transfert de file d'attente prioritaire qui donne la priorité aux stations mobiles (MS) à déplacement rapide comme moyen d'atténuer les terminaisons forcées encore plus que la méthode de mise en file d'attente non prioritaire sans augmenter sensiblement la charge de traitement. Nous comparons ensuite les caractéristiques du trafic de notre méthode proposée avec celles de trois autres méthodes dans les systèmes de microcellules - méthode immédiate, méthode de file d'attente non prioritaire et méthode de transfert conventionnel sans multi-connexions - par simulation informatique. Ici, étant donné que la méthode proposée donne la priorité aux appels à évolution rapide, les caractéristiques de trafic de ces méthodes ont été évaluées séparément pour les MS à évolution lente et rapide. Les résultats révèlent que la méthode proposée peut réduire la probabilité de terminaison forcée et la probabilité totale d’échec d’appel plus que la méthode de mise en file d’attente non prioritaire sans avoir un impact appréciable sur les appels lents.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Noriteru SHINAGAWA, Takehiko KOBAYASHI, Keisuke NAKANO, Masakazu SENGOKU, "Evaluation of Teletraffic in Cellular Communication Systems Using Multi-Connections for Soft Handoff" in IEICE TRANSACTIONS on Fundamentals,
vol. E83-A, no. 7, pp. 1318-1327, July 2000, doi: .
Abstract: To implement soft handoff in cellular communication systems that employ code division multiple access (CDMA), it is necessary to establish communication lines between the switch and multiple base stations and distribute the communication data via these multi-connections to the base stations simultaneously. This means that, when soft handoff is performed with the same amount of communication line resources as hard handoff, the blocking probability is higher than for hard handoff, and service quality is thus worse. Furthermore, handoffs occur more frequently as the size of cells becomes smaller, and this increases the probability of forced terminations. Switches must be endowed with greater processing capacity to accommodate the more frequent handoffs. The use of the queuing handoff method can be expected, in general, to mitigate forced termination probability compared with the immediate handoff method. In this regard, we propose a prioritized queuing handoff method that gives priority to fast-moving mobile stations (MSs) as a way to mitigate forced terminations even more than the non-priority queuing method without appreciably increasing the processing load. We then compare the traffic characteristics of our proposed method with these of three other methods in micro cell systems--immediate method, non-priority queuing method, and conventional hard handoff method without multi-connections--by computer simulation. Here, considering that the proposed method gives priority to fast-moving calls, traffic characteristics for these methods were evaluated separately for slow- and fast-moving MSs. The results reveal that proposed method can reduce the forced termination probability and total call failure probability more than non-priority queuing method without having an appreciable impact on slow-moving calls.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/e83-a_7_1318/_p
Copier
@ARTICLE{e83-a_7_1318,
author={Noriteru SHINAGAWA, Takehiko KOBAYASHI, Keisuke NAKANO, Masakazu SENGOKU, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Evaluation of Teletraffic in Cellular Communication Systems Using Multi-Connections for Soft Handoff},
year={2000},
volume={E83-A},
number={7},
pages={1318-1327},
abstract={To implement soft handoff in cellular communication systems that employ code division multiple access (CDMA), it is necessary to establish communication lines between the switch and multiple base stations and distribute the communication data via these multi-connections to the base stations simultaneously. This means that, when soft handoff is performed with the same amount of communication line resources as hard handoff, the blocking probability is higher than for hard handoff, and service quality is thus worse. Furthermore, handoffs occur more frequently as the size of cells becomes smaller, and this increases the probability of forced terminations. Switches must be endowed with greater processing capacity to accommodate the more frequent handoffs. The use of the queuing handoff method can be expected, in general, to mitigate forced termination probability compared with the immediate handoff method. In this regard, we propose a prioritized queuing handoff method that gives priority to fast-moving mobile stations (MSs) as a way to mitigate forced terminations even more than the non-priority queuing method without appreciably increasing the processing load. We then compare the traffic characteristics of our proposed method with these of three other methods in micro cell systems--immediate method, non-priority queuing method, and conventional hard handoff method without multi-connections--by computer simulation. Here, considering that the proposed method gives priority to fast-moving calls, traffic characteristics for these methods were evaluated separately for slow- and fast-moving MSs. The results reveal that proposed method can reduce the forced termination probability and total call failure probability more than non-priority queuing method without having an appreciable impact on slow-moving calls.},
keywords={},
doi={},
ISSN={},
month={July},}
Copier
TY - JOUR
TI - Evaluation of Teletraffic in Cellular Communication Systems Using Multi-Connections for Soft Handoff
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 1318
EP - 1327
AU - Noriteru SHINAGAWA
AU - Takehiko KOBAYASHI
AU - Keisuke NAKANO
AU - Masakazu SENGOKU
PY - 2000
DO -
JO - IEICE TRANSACTIONS on Fundamentals
SN -
VL - E83-A
IS - 7
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - July 2000
AB - To implement soft handoff in cellular communication systems that employ code division multiple access (CDMA), it is necessary to establish communication lines between the switch and multiple base stations and distribute the communication data via these multi-connections to the base stations simultaneously. This means that, when soft handoff is performed with the same amount of communication line resources as hard handoff, the blocking probability is higher than for hard handoff, and service quality is thus worse. Furthermore, handoffs occur more frequently as the size of cells becomes smaller, and this increases the probability of forced terminations. Switches must be endowed with greater processing capacity to accommodate the more frequent handoffs. The use of the queuing handoff method can be expected, in general, to mitigate forced termination probability compared with the immediate handoff method. In this regard, we propose a prioritized queuing handoff method that gives priority to fast-moving mobile stations (MSs) as a way to mitigate forced terminations even more than the non-priority queuing method without appreciably increasing the processing load. We then compare the traffic characteristics of our proposed method with these of three other methods in micro cell systems--immediate method, non-priority queuing method, and conventional hard handoff method without multi-connections--by computer simulation. Here, considering that the proposed method gives priority to fast-moving calls, traffic characteristics for these methods were evaluated separately for slow- and fast-moving MSs. The results reveal that proposed method can reduce the forced termination probability and total call failure probability more than non-priority queuing method without having an appreciable impact on slow-moving calls.
ER -