The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Nous avons déjà proposé une algèbre de processus µLOTOS comme cadre mathématique pour synthétiser un processus à partir d'un certain nombre de spécifications (incomplètes), dans lesquelles les exigences du processus ne doivent pas être complètement déterminées. Il est garanti que le procédé synthétisé satisfait à toutes les spécifications données, si elles sont cohérentes. Par exemple, µLOTOS est utile pour la conception incrémentielle. L’avantage de µLOTOS est que propriétés de vivacité peut s'exprimer par moindres points fixes et à la disjonctions
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Yoshinao ISOBE, Yutaka SATO, Kazuhito OHMAKI, "Least Fixpoint and Greatest Fixpoint in a Process Algebra with Conjunction and Disjunction" in IEICE TRANSACTIONS on Fundamentals,
vol. E83-A, no. 3, pp. 401-411, March 2000, doi: .
Abstract: We have already proposed a process algebra µLOTOS as a mathematical framework to synthesize a process from a number of (incomplete) specifications, in which requirements for the process do not have to be completely determined. It is guaranteed that the synthesized process satisfies all the given specifications, if they are consistent. For example, µLOTOS is useful for incremental design. The advantage of µLOTOS is that liveness properties can be expressed by least fixpoints and disjunctions
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/e83-a_3_401/_p
Copier
@ARTICLE{e83-a_3_401,
author={Yoshinao ISOBE, Yutaka SATO, Kazuhito OHMAKI, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Least Fixpoint and Greatest Fixpoint in a Process Algebra with Conjunction and Disjunction},
year={2000},
volume={E83-A},
number={3},
pages={401-411},
abstract={We have already proposed a process algebra µLOTOS as a mathematical framework to synthesize a process from a number of (incomplete) specifications, in which requirements for the process do not have to be completely determined. It is guaranteed that the synthesized process satisfies all the given specifications, if they are consistent. For example, µLOTOS is useful for incremental design. The advantage of µLOTOS is that liveness properties can be expressed by least fixpoints and disjunctions
keywords={},
doi={},
ISSN={},
month={March},}
Copier
TY - JOUR
TI - Least Fixpoint and Greatest Fixpoint in a Process Algebra with Conjunction and Disjunction
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 401
EP - 411
AU - Yoshinao ISOBE
AU - Yutaka SATO
AU - Kazuhito OHMAKI
PY - 2000
DO -
JO - IEICE TRANSACTIONS on Fundamentals
SN -
VL - E83-A
IS - 3
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - March 2000
AB - We have already proposed a process algebra µLOTOS as a mathematical framework to synthesize a process from a number of (incomplete) specifications, in which requirements for the process do not have to be completely determined. It is guaranteed that the synthesized process satisfies all the given specifications, if they are consistent. For example, µLOTOS is useful for incremental design. The advantage of µLOTOS is that liveness properties can be expressed by least fixpoints and disjunctions
ER -